Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Phys Rev E ; 108(1-1): 014113, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37583220

ABSTRACT

Many cellular organelles are membrane-bound structures with complex membrane composition and shape. Their shapes have been observed to depend on the metabolic state of the organelle and the mechanisms that couple biochemical pathways and membrane shape are still actively investigated. Here, we study a model coupling inhomogeneities in the lipid composition and membrane geometry via a generalized Helfrich free energy. We derive the resulting stress tensor, the Green's function for a tubular membrane, and compute the phase diagram of the induced deformations. We then apply this model to study the deformation of mitochondria cristae described as membrane tubes supporting a pH gradient at its surface. This gradient in turn controls the lipid composition of the membrane via the protonation or deprotonation of cardiolipins, which are acid-based lipids known to be crucial for mitochondria shape and functioning. Our model predicts the appearance of tube deformations resembling the observed shape changes of cristea when submitted to a proton gradient.


Subject(s)
Mitochondrial Membranes , Proton-Motive Force , Membranes/metabolism , Mitochondrial Membranes/metabolism , Mitochondria , Lipids/chemistry
2.
Phys Rev Lett ; 130(7): 076201, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867792

ABSTRACT

We compute ionic free energy adsorption profiles at an aqueous graphene interface by developing a self-consistent approach. To do so, we design a microscopic model for water and put the liquid on an equal footing with the graphene described by its electronic band structure. By evaluating progressively the electronic and dipolar coupled electrostatic interactions, we show that the coupling level including mutual graphene and water screening permits one to recover remarkably the precision of extensive quantum simulations. We further derive the potential of mean force evolution of several alkali cations.

3.
J Chem Phys ; 155(2): 024112, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34266284

ABSTRACT

In this work, we study the continuum theories of dipolar-Poisson models. Both the standard dipolar-Poisson model and the dipolar-Poisson-Langevin model, which keeps the dipolar density fixed, are non-convex functionals of the scalar electrostatic potential ϕ. Applying the Legendre transform approach introduced by Maggs [Europhys. Lett. 98, 16012 (2012)], the dual functionals of these models are derived and are given by convex vector-field functionals of the dielectric displacement D and the polarization field P. We compare the convex functionals in P-space to the non-convex functionals in electric field E-space and apply them to the classic problem of the solvation of point-like ions. Since the dipolar-Poisson model does not properly describe polarization saturation, we argue that only the dipolar-Poisson-Langevin functional can be used to provide a nonlinear generalization of the harmonic polarization functional used in the theory of Marcus for the electron transfer rate to nonlinear regimes. We show that the model can be quantitatively parameterized by molecular dynamics simulations.

4.
Phys Rev E ; 102(2-1): 022401, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32942462

ABSTRACT

As the places where most of the fuel of the cell, namely, ATP, is synthesized, mitochondria are crucial organelles in eukaryotic cells. The shape of the invaginations of the mitochondria inner membrane, known as a crista, has been identified as a signature of the energetic state of the organelle. However, the interplay between the rate of ATP synthesis and the crista shape remains unclear. In this work, we investigate the crista membrane deformations using a pH-dependent Helfrich model, maintained out of equilibrium by a diffusive flux of protons. This model gives rise to shape changes of a cylindrical invagination, in particular to the formation of necks between wider zones under variable, and especially oscillating, proton flux.


Subject(s)
Mitochondrial Membranes/metabolism , Models, Biological , Protons , Biological Transport
6.
Science ; 338(6104): 253-6, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22923438

ABSTRACT

Differential cell adhesion and cortex tension are thought to drive cell sorting by controlling cell-cell contact formation. Here, we show that cell adhesion and cortex tension have different mechanical functions in controlling progenitor cell-cell contact formation and sorting during zebrafish gastrulation. Cortex tension controls cell-cell contact expansion by modulating interfacial tension at the contact. By contrast, adhesion has little direct function in contact expansion, but instead is needed to mechanically couple the cortices of adhering cells at their contacts, allowing cortex tension to control contact expansion. The coupling function of adhesion is mediated by E-cadherin and limited by the mechanical anchoring of E-cadherin to the cortex. Thus, cell adhesion provides the mechanical scaffold for cell cortex tension to drive cell sorting during gastrulation.


Subject(s)
Cell Communication , Gastrulation , Stem Cells/physiology , Zebrafish/embryology , Animals , Cadherins/metabolism , Cadherins/physiology , Cell Adhesion , Cell Shape , Cytoskeleton/physiology , Ectoderm/cytology , Stem Cells/cytology , Surface Tension
7.
Chemistry ; 13(19): 5388-93, 2007.
Article in English | MEDLINE | ID: mdl-17385755

ABSTRACT

The origin of the formation of the weak bond N|C...O involved in an original class of aspartic protease inhibitors was investigated by means of the electron localization function (ELF) and explicitly correlated wave-function (MRCI) analysis. The distance between the electrophilic C and the nucleophilic N centers appears to be controlled directly by the polarity and proticity of the medium. In light of these investigations, an unusual dative N-C bonding picture was characterized. Formation of this bond is driven by the enhancement of the ionic contribution C(+)-O(-) induced mainly by the polarization effect of the near N lone pair, and to a lesser extent by a weak charge delocalization N-->CO. Although the main role of the solvating environment is to stabilize the ionic configuration, the protic solvent can enhance the C(+)-O(-) configuration through a slight but cumulative charge transfer towards water molecules in the short N-C distance regime. Our revisited bond scheme suggests the possible tuning of the N-CO interaction in the design of specific inhibitors.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Protease Inhibitors/chemistry , Computer Simulation , Models, Molecular , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...