Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(4): e0069423, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37358441

ABSTRACT

Postweaning diarrhea (PWD) in piglets impair welfare, induce economic losses and lead to overuse of antibiotics. The early life gut microbiota was proposed to contribute to the susceptibility to PWD. The objective of our study was to evaluate in a large cohort of 116 piglets raised in 2 separate farms whether the gut microbiota composition and functions during the suckling period were associated with the later development of PWD. The fecal microbiota and metabolome were analyzed by 16S rRNA gene amplicon sequencing and nuclear magnetic based resonance at postnatal day 13 in male and female piglets. The later development of PWD was recorded for the same animals from weaning (day 21) to day 54. The gut microbiota structure and α-diversity during the suckling period were not associated with the later development of PWD. There was no significant difference in the relative abundances of bacterial taxa in suckling piglets that later developed PWD. The predicted functionality of the gut microbiota and the fecal metabolome signature during the suckling period were not linked to the later development of PWD. Trimethylamine was the bacterial metabolite which fecal concentration during the suckling period was the most strongly associated with the later development of PWD. However, experiments in piglet colon organoids showed that trimethylamine did not disrupt epithelial homeostasis and is thus not likely to predispose to PWD through this mechanism. In conclusion, our data suggest that the early life microbiota is not a major factor underlying the susceptibility to PWD in piglets. IMPORTANCE This study shows that the fecal microbiota composition and metabolic activity are similar in suckling piglets (13 days after birth) that either later develop post-weaning diarrhea (PWD) or not, which is a major threat for animal welfare that also causes important economic losses and antibiotic treatments in pig production. The aim of this work was to study a large cohort of piglets raised in separates environments, which is a major factor influencing the early life microbiota. One of the main findings is that, although the fecal concentration of trimethylamine in suckling piglets was associated with the later development of PWD, this gut microbiota-derived metabolite did not disrupt the epithelial homeostasis in organoids derived from the pig colon. Overall, this study suggests that the gut microbiota during the suckling period is not a major factor underlying the susceptibility of piglets to PWD.


Subject(s)
Microbiota , Animals , Female , Male , Swine , RNA, Ribosomal, 16S/genetics , Diarrhea/veterinary , Diarrhea/microbiology , Methylamines , Bacteria/genetics
2.
J Proteome Res ; 20(1): 982-994, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33289566

ABSTRACT

The gut microbiota plays a key role in intestinal development at the suckling-to-weaning transition. The objective of this study was to analyze the production of metabolites by the gut microbiota in suckling and weaned piglets. We studied piglets raised in two separate maternity farms and weaned at postnatal day 21 in the same farm. The fecal metabolome (1H nuclear magnetic resonance) and the microbiota composition (16S rRNA gene amplicon sequencing) and its predicted functions (PICRUSt2) were analyzed in the same piglets during the suckling period (postnatal day 13) and 2 days after weaning (postnatal day 23). The relative concentrations of the bacterial metabolites methylamine, dimethylamine, cadaverine, tyramine, putrescine, 5-aminovalerate, succinate, and 3-(4-hydroxyphenylpropionate) were higher during the suckling period than after weaning. In contrast, the relative concentrations of the short-chain fatty acids acetate and propionate were higher after weaning than during the suckling period. The maternity of origin of piglets also influenced the level of some bacterial metabolites (propionate and isobutyrate). The fecal metabolome signatures observed in suckling and weaned piglets were associated with specific microbiota-predicted functionalities, structure, and diversity. Gut microbiota-derived metabolites, which are differentially abundant between suckling and weaned piglets (e.g., short-chain fatty acids and biogenic amines), are known to regulate gut health. Thus, identification of metabolome signatures in suckling and weaned piglets paves the way for the development of health-promoting nutritional strategies, targeting the production of bacterial metabolites in early life.


Subject(s)
Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Fatty Acids, Volatile , Female , Humans , Pregnancy , RNA, Ribosomal, 16S , Swine , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...