Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
3.
Nature ; 506(7486): 89-92, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24362564

ABSTRACT

Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.


Subject(s)
Biological Evolution , Cold Climate , Ecosystem , Freezing , Magnoliopsida/anatomy & histology , Magnoliopsida/physiology , Xylem/anatomy & histology , Likelihood Functions , Phylogeography , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Seeds/physiology , Time Factors , Wood/anatomy & histology , Wood/physiology , Xylem/physiology
4.
Am J Bot ; 80(5): 557-560, 1993 May.
Article in English | MEDLINE | ID: mdl-30139145

ABSTRACT

The evolution of many floral traits, including monoecy and dichogamy, has been attributed to selection for avoidance of self-fertilization. If this explanation is correct, monoecy and dichogamy should be uncommon among self-incompatible species because physiological barriers prevent self-fertilization in such species. In fact, self-fertility was independent of sexual system in a sample of 588 hermaphroditic and monoecious angiosperms. Overall, dichogamy was also equally common among self-incompatible and self-compatible species. When the different forms of dichogamy were analyzed separately, only intrafloral protogyny was associated with self-compatibility. This form of dichogamy is less common among angiosperms than intrafloral protandry, which is probably less effective at reducing self-fertilization. Thus, avoidance of self-fertilization has probably been less important in the evolution of monoecy and most forms of dichogamy than other factors, such as avoidance of pollen-pistil interference, and flexibility of resource allocation to male and female functions.

5.
Am J Bot ; 77(2): 178-187, 1990 Feb.
Article in English | MEDLINE | ID: mdl-30139079

ABSTRACT

I examined effects of pollination intensity on fruit, seed and seedling characteristics in Campsis radicans, and joint effects of pollen donor and pollination intensity on fruit production. Large pollen loads were more likely to initiate fruit production than small pollen loads, and the former fruits contained more seeds and a greater total seed mass. No further increases in seed number or mass occurred for pollen loads above 4,000 grains. The weight of individual seeds was unaffected by pollen load. Effects of pollen donor were generally larger than effects of pollen load, and fruit production from small loads of pollen from one donor were sometimes equal to fruit production from larger pollen loads from another donor. The ratio of pollen grains deposited to resultant seeds increased with pollen load, and several explanations are proposed. Seeds from heavy pollinations emerged better than seeds from light pollinations, but did not differ in speed of germination or in the performance of seedlings up to 126 days. The emergence differences are probably due to differing intensities of pollen tube competition.

6.
Oecologia ; 70(1): 1-5, 1986 Aug.
Article in English | MEDLINE | ID: mdl-28311280

ABSTRACT

I examined the effects of pollen loads containing pollen from one, three and five donors on fruit production and fruit quality in Campsis radicans. Number of pollen donors had no significant effect on % fruit production, seed number, seed weight or seed germination. In singledonor pollinations the identity of the donor did have a strong effect on the above parameters. Furthermore, the best single donor sired fruits with more seeds and heavier seeds than any mixture containing this donor. This pattern indicates interference of pollens or preemption of some ovules by the inferior pollen. In Campsis, therefore, the number of pollen donors contributing to a pollen load is less important than the identity of these donors in determining fruit production and fruit quality. Seeds from fruits resulting from mixed pollination were slightly more variable than seeds from fruits resulting from single-donor pollinations.

SELECTION OF CITATIONS
SEARCH DETAIL
...