Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(3): 038201, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36763385

ABSTRACT

The dispersive spreading of microscopic particles in shear flows is influenced both by advection and thermal motion. At the nanoscale, interactions between such particles and their confining boundaries become unavoidable. We address the roles of electrostatic repulsion and absorption on the spatial distribution and dispersion of charged nanoparticles in near-surface shear flows, observed under evanescent illumination. The electrostatic repulsion between particles and the lower charged surface is tuned by varying electrolyte concentrations. Particles leaving the field of vision can be neglected from further analysis, such that the experimental ensemble is equivalent to that of Taylor dispersion with absorption. These two ingredients modify the particle distribution, deviating strongly from the Gibbs-Boltzmann form at the nanoscale studied here. The overall effect is to restrain the accessible space available to particles, which leads to a striking, tenfold reduction in the spreading dynamics as compared to the noninteracting case.

2.
Environ Sci Pollut Res Int ; 29(6): 9375-9385, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35001272

ABSTRACT

Plastic and microplastic pollutions are known to be widespread across the planet in all types of environments. However, relatively little about microplastic quantities in the deeper areas of the oceans is known, due to the difficulty to reach these environments. In this work, we present an investigation of microplastic (<5 mm) distribution performed in the bottom sediments of the abyssal plain off the coast and the canyon of Toulon (France). Four samples of deep-sea sediment were collected at the depth of 2443 m during the sea operations carried out by the French oceanographic cruises for the KM3NeT project. The chemical and physical characterisation of the sediment was carried out, and items were extracted from sediments by density separation and analysed by optical microscope and µRaman spectroscopy. Results show microplastics in the deep-sea sediments with a concentration of about 80 particles L-1, confirming the hypothesis of microplastics spread to abyssal sediments in the Mediterranean Sea.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Mediterranean Sea , Plastics , Water Pollutants, Chemical/analysis
3.
Soft Matter ; 17(27): 6646-6660, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34152345

ABSTRACT

We investigate experimentally the behavior of self-propelled water-in-oil droplets, confined in capillaries of different square and circular cross-sections. The droplet's activity comes from the formation of swollen micelles at its interface. In straight capillaries the velocity of the droplet decreases with increasing confinement. However, at very high confinement, the velocity converges toward a non-zero value, so that even very long droplets swim. Stretched circular capillaries are used to explore even higher confinement. The lubrication layer around the droplet then takes a non-uniform thickness which constitutes a significant difference to usual flow-driven passive droplets. A neck forms at the rear of the droplet, deepens with increasing confinement, and eventually undergoes successive spontaneous splitting events for large enough confinement. Such observations stress the critical role of the activity of the droplet interface in the droplet's behavior under confinement. We then propose an analytical formulation by integrating the interface activity and the swollen micelle transport problem into the classical Bretherton approach. The model accounts for the convergence of the droplet's velocity to a finite value for large confinement, and for the non-classical shape of the lubrication layer. We further discuss on the saturation of the micelle concentration along the interface, which would explain the divergence of the lubrication layer thickness for long enough droplets, eventually leading to spontaneous droplet division.

4.
Phys Rev Lett ; 124(18): 184502, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441970

ABSTRACT

We present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the vertical and lateral flows and which highlights the symmetry in the system. The symmetrization time is found to depend on the membrane thickness, surface tension, and viscosity.

5.
Phys Rev Lett ; 124(5): 054502, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083893

ABSTRACT

We present the first direct measurement of the elastohydrodynamic lift force acting on a sphere moving within a viscous liquid, near and along a soft substrate under nanometric confinement. Using atomic force microscopy, the lift force is probed as a function of the gap size, for various driving velocities, viscosities, and stiffnesses. The force increases as the gap is reduced and shows a saturation at small gap. The results are in excellent agreement with scaling arguments and a quantitative model developed from the soft lubrication theory, in linear elasticity, and for small compliances. For larger compliances, or equivalently for smaller confinement length scales, an empirical scaling law for the observed saturation of the lift force is given and discussed.

6.
PLoS One ; 8(7): e67523, 2013.
Article in English | MEDLINE | ID: mdl-23874425

ABSTRACT

The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.


Subject(s)
Eutrophication/physiology , Fluorescence , Oceans and Seas , Animals , Cell Count , Luminescent Measurements/methods , Mediterranean Region , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...