Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eukaryot Cell ; 12(11): 1517-29, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24036346

ABSTRACT

Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane.


Subject(s)
Dictyostelium/metabolism , Phospholipids/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Endoplasmic Reticulum/metabolism , Molecular Sequence Data , Phospholipids/chemistry , Protein Transport , Protozoan Proteins/chemistry
2.
Curr Microbiol ; 59(2): 206-11, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19459002

ABSTRACT

An Enterococcus faecalis mutant strain with a reduced ability for biofilm formation and primary attachment when compared to the high biofilm-forming wild-type strain was characterized by molecular biological and proteomic approaches. A point mutation in the srt-1 gene, which encodes a sortase-type enzyme and is part of the recently described bee (biofilm enhancer in Enterococcus) gene cluster, could be identified in the mutant strain. The Srt-1 deficiency resulted in a loss of the Bee-2 protein within a high molecular weight complex in cell surface protein extracts, as determined by mass spectrometry. These findings strongly suggest a specific linkage of Bee-2 to Bee-1 and Bee-3 within a complex by Srt-1. Furthermore, the identification of specific pilin motifs conserved in surface proteins of gram-positive bacteria indicated a possible involvement of the bee genes in the formation of pili structures, and may thus play a role in enhancing biofilm formation in Enterococcus faecalis.


Subject(s)
Biofilms/growth & development , Enterococcus faecalis/genetics , Fimbriae, Bacterial/genetics , Multigene Family , Adult , Bacterial Adhesion , Bacterial Proteins/analysis , Enterococcus faecalis/chemistry , Enterococcus faecalis/isolation & purification , Enterococcus faecalis/physiology , Female , Humans , Point Mutation , Proteome/analysis , Vagina/microbiology
3.
BMC Chem Biol ; 9: 3, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19216744

ABSTRACT

BACKGROUND: In the eukaryotic cell the cAMP-dependent protein kinase (PKA) is a key enzyme in signal transduction and represents the main target of the second messenger cAMP. Here we describe the design, synthesis and characterisation of specifically tailored cAMP analogs which can be utilised as a tool for affinity enrichment and purification as well as for proteomics based analyses of cAMP binding proteins. RESULTS: Two sets of chemical binders were developed based on the phosphorothioate derivatives of cAMP, Sp-cAMPS and Rp-cAMPS acting as cAMP-agonists and -antagonists, respectively. These compounds were tested via direct surface plasmon resonance (SPR) analyses for their binding properties to PKA R-subunits and holoenzyme. Furthermore, these analogs were used in an affinity purification approach to analyse their binding and elution properties for the enrichment and improvement of cAMP binding proteins exemplified by the PKA R-subunits. As determined by SPR, all tested Sp-analogs provide valuable tools for affinity chromatography. However, Sp-8-AEA-cAMPS displayed (i) superior enrichment properties while maintaining low unspecific binding to other proteins in crude cell lysates, (ii) allowing mild elution conditions and (iii) providing the capability to efficiently purify all four isoforms of active PKA R-subunit in milligram quantities within 8 h. In a chemical proteomics approach both sets of binders, Rp- and Sp-cAMPS derivatives, can be employed. Whereas Sp-8-AEA-cAMPS preferentially binds free R-subunit, Rp-AHDAA-cAMPS, displaying antagonist properties, not only binds to the free PKA R-subunits but also to the intact PKA holoenzyme both from recombinant and endogenous sources. CONCLUSION: In summary, all tested cAMP analogs were useful for their respective application as an affinity reagent which can enhance purification of cAMP binding proteins. Sp-8-AEA-cAMPS was considered the most efficient analog since Sp-8-AHA-cAMPS and Sp-2-AHA-cAMPS, demonstrated incomplete elution from the matrix, as well as retaining notable amounts of bound protein contaminants. Furthermore it could be demonstrated that an affinity resin based on Rp-8-AHDAA-cAMPS provides a valuable tool for chemical proteomics approaches.

4.
Biochim Biophys Acta ; 1764(12): 1788-800, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17097931

ABSTRACT

With the completion of the major genome projects, one focus in biomedical research has shifted from the analysis of the rather static genome to the highly dynamic proteome. The sequencing of whole genomes did not lead to much anticipated insights into disease mechanisms; however, it paved the way for proteomics by providing the databases for protein identification by peptide mass fingerprints. The relative protein distribution within a cell or tissue is subject to change upon external and internal stimuli. Signal transduction events extend beyond a simple change in protein levels; rather they are governed by posttranslational modifications (PTMs), which provide a quick and efficient way to modulate cellular signals. Because most PTMs change the mass of a protein, they are amenable to analysis by mass spectrometry. Their investigation adds a level of functionality to proteomics, which can be expected to greatly aid in the understanding of the complex cellular machinery involved in signal transduction, metabolism, differentiation or in disease. This review provides an overview on posttranslational modifications exemplified on the model system cAMP-dependent protein kinase. Strategies for detection of selected PTMs are described and discussed in the context of protein kinase function.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Protein Processing, Post-Translational , Proteomics/methods , Acylation , Amino Acid Sequence , Asparagine/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Models, Molecular , Molecular Sequence Data , Myristic Acid/metabolism , Phosphorylation , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...