Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(12): 125107, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599595

ABSTRACT

We report on the design, construction, and use of axisymmetric magnetic traps for levitating diamagnetic particles. The magnetic traps each consist of two pole pieces passively driven by a neodymium iron boron (NdFeB) permanent magnet. The magnetic field configuration between the pole pieces combined with the earth's gravitational field forms a 3D confining potential capable of levitating a range of diamagnetic substances, e.g., graphite powder, silica microspheres, and gallium nitride (GaN) powder and nanowires. Particles trap stably at atmosphere and in high-vacuum for periods up to weeks with lifetimes largely determined by choices made to actively destabilize the trap. We describe the principles of operation, finite element design, approximate closed-form results for design rules, and examples of operation of such traps.

2.
Nanotechnology ; 23(49): 495709, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23149629

ABSTRACT

Brillouin-light-scattering measurements and finite-element modeling of vibrational spectra in the range of 5-40 GHz are presented for an array of monocrystalline GaN nanowires with hexagonal cross sections. Analysis of the spectra is substantially complicated by the presence of a distribution of nanowire diameters. The measurements and calculations reveal a variety of modes with simple flexural, higher-order flexural, approximately 'plane-strain', approximately longitudinal and torsional displacement patterns that are similar to the corresponding modes of isotropic cylinders. The largest peaks in the spectra with acoustic angular wavenumbers in the range of 4 to ~15 µm(-1) were determined to arise from modes with relatively large transverse displacements, consistent with inelastic light scattering arising predominantly from surface ripple. These dominant modes have finite frequencies in the limit of zero wavenumber, corresponding to transverse standing waves. At higher wavenumbers, the spectra provide evidence for increased scattering through elasto-optic coupling, especially with respect to the emergence of a peak from a mode analogous to the longitudinal guided modes of thin films.


Subject(s)
Gallium/chemistry , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Computer Simulation , Microwaves , Particle Size , Scattering, Radiation , Vibration
3.
Rev Sci Instrum ; 83(8): 083702, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22938298

ABSTRACT

We present a near-field scanning microwave microscope (NSMM) that has been configured for imaging photovoltaic samples. Our system incorporates a Pt-Ir tip inserted into an open-ended coaxial cable to form a weakly coupled resonator, allowing the microwave reflection S(11) signal to be measured across a sample over a frequency range of 1 GHz - 5 GHz. A phase-tuning circuit increased impedance-measurement sensitivity by allowing for tuning of the S(11) minimum down to -78 dBm. A bias-T and preamplifier enabled simultaneous, non-contact measurement of the DC tip-sample current, and a tuning fork feedback system provided simultaneous topographic data. Light-free tuning fork feedback provided characterization of photovoltaic samples both in the dark and under illumination at 405 nm. NSMM measurements were obtained on an inhomogeneous, third-generation Cu(In,Ga)Se(2) (CIGS) sample. The S(11) and DC current features were found to spatially broaden around grain boundaries with the sample under illumination. The broadening is attributed to optically generated charge that becomes trapped and changes the local depletion of the grain boundaries, thereby modifying the local capacitance. Imaging provided by the NSMM offers a new RF methodology to resolve and characterize nanoscale electrical features in photovoltaic materials and devices.

4.
Nanotechnology ; 23(32): 325701, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22802219

ABSTRACT

The optical polarization properties of GaN/AlGaN core/shell nanowire (NW) heterostructures have been investigated using polarization resolved micro-photoluminescence (µ-PL) and interpreted in terms of a strain-dependent 6 × 6 k·p theoretical model. The NW heterostructures were fabricated in two steps: the Si-doped n-type c-axis GaN NW cores were grown by molecular beam epitaxy (MBE) and then epitaxially overgrown using halide vapor phase epitaxy (HVPE) to form Mg-doped AlGaN shells. The emission of the uncoated strain-free GaN NW core is found to be polarized perpendicular to the c-axis, while the GaN core compressively strained by the AlGaN shell exhibits a polarization parallel to the NW c-axis. The luminescence of the AlGaN shell is weakly polarized perpendicular to the c-axis due to the tensile axial strain in the shell.

5.
Langmuir ; 26(23): 18382-91, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21033757

ABSTRACT

We report the use of atomic layer deposition (ALD) coating as a nanobiosensor functionalization strategy for enhanced surface immobilization that may enable higher detection sensitivity. Three kinds of ALD coating films, Al(2)O(3), TiO(2), and SiO(2), were grown on the gallium nitride nanowire (GaN NW) surfaces and characterized with high-resolution transmission electron microscopy (HRTEM) and vacuum Fourier transform infrared spectroscopy (FTIR). Results from HRTEM showed that the thicknesses of ALD-Al(2)O(3), ALD-TiO(2) and ALD-SiO(2) coatings were 4-5 nm, 5-6 nm, and 12-14 nm, respectively. Results from FTIR showed that the OH contents of these coatings were, respectively, ∼6.9, ∼7.4, and ∼9.3 times that of piranha-treated GaN NW. Furthermore, to compare protein attachments on the different surfaces, poly(ethylene glycol) (PEG)-biotin was grafted on the OH-functionalized GaN NW surfaces through active Si-Cl functional groups. Streptavidin protein molecules were then attached to the biotin ends via specific binding. The immobilized streptavidin molecules were examined with scanning electron microscopy, HRTEM, and fluorescent imaging. Results from HRTEM and energy-dispersive X-ray revealed that the nitrogen concentrations on the three ALD coatings were significantly higher than that on the piranha-treated surface. Results from fluorescent imaging further showed that the protein attachments on the Al(2)O(3), TiO(2), and SiO(2) ALD coatings were, respectively, 6.4, 7.8, and 9.8 times that of piranha-treated surface. This study demonstrates that ALD coating can be used as a functionalization strategy for nanobiosensors because it is capable of creating functional groups with much higher density compared to widely used acid modifications, and among the three ALD coatings, ALD-SiO(2) yielded the most promising results in OH content and protein attachment.


Subject(s)
Biosensing Techniques , Gallium/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Biotin/chemistry , Materials Testing , Microscopy, Electron/methods , Microscopy, Electron, Transmission/methods , Models, Chemical , Proteins/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Streptavidin/chemistry , Surface Properties , X-Rays
6.
Phys Rev Lett ; 70(24): 3768-3771, 1993 Jun 14.
Article in English | MEDLINE | ID: mdl-10053957
SELECTION OF CITATIONS
SEARCH DETAIL
...