Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10988, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744852

ABSTRACT

Investigating biodegradable and biocompatible materials for electronic applications can lead to tangible outcomes such as developing green-electronic devices and reducing the amount of e-waste. The proposed emulsion-based conducting ink formulation takes into consideration circular economy and green principles throughout the entire process, from the selection of materials to the production process. The ink is formulated using the biopolymer polylactic acid dissolved in a sustainable solvent mixed with water, along with conductive carbon nanotubes (CNTs) and silver flakes as fillers. Hybrid conductive fillers can lower the percolation threshold of the ink and the production costs, while maintaining excellent electrical properties. The coating formed after the deposition of the ink, undergoes isothermal treatment at different temperatures and durations to improve its adhesion and electrical properties. The coating's performance was evaluated by creating an eight-finger interdigitated sensor using a Voltera PCB printer. The sensor demonstrates exceptional performance when exposed to various loading and unloading pressures within the 0.2-500.0 kPa range. The results show a consistent correlation between the change in electrical resistance and the stress caused by the applied load. The ink is biodegradable in marine environments, which helps avoiding its accumulation in the ecosystem over time.

2.
ACS Appl Mater Interfaces ; 15(28): 33916-33931, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37376819

ABSTRACT

Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.


Subject(s)
Anthozoa , Curcumin , Zein , Animals , Anthozoa/metabolism , Curcumin/pharmacology , Antioxidants/pharmacology , Chlorophyll/metabolism , Coral Reefs
3.
ACS Appl Mater Interfaces ; 13(32): 38688-38699, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34346668

ABSTRACT

The industrial processing of avocados annually generates more than 1.2 million tons of avocado peels (APs) and avocado seeds (ASs) that have great potential in the production of active bioplastics, although they have never been considered for this aim until now. Separately, the APs and ASs, as well as a combination of avocado peels and seeds (APSs), were evaluated here for the first time for the preparation of antioxidant films, with application in food packaging. Films were prepared by casting, after their processing by three different methods: (1) hydrolysis in acid media, (2) hydrolysis followed by plasticization, and (3) hydrolysis and plasticization followed by blending with pectin polymers in different proportions (25 and 50 wt %). The results indicate that the combination of hydrolysis, plasticization, and pectin blending is essential to obtain materials with competitive mechanical properties, optical clarity, excellent oxygen barrier properties, high antioxidant activity, biodegradability, and migration of components in TENAX suitable for food contact applications. In addition, the materials prepared with APSs are advantageous from the point of view of the industrial waste valorization, since the entire avocado wastes are used for the production of bioplastics, avoiding further separation processes for their valorization.


Subject(s)
Food Packaging/methods , Persea , Seeds/metabolism , Antioxidants/chemistry , Pectins/chemistry , Persea/chemistry , Persea/metabolism
5.
Sci Rep ; 10(1): 18340, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110162

ABSTRACT

A nanocomposite material characterized by peroxidase-like properties was developed through the dispersion of platinum nanoparticles (PtNPs) inside a hydrogelic matrix. The integration of the PtNP catalysts within the matrix resulted in their stabilization, preventing aggregation and precipitation in media of environmental interest, characterized by high ionic strength and by the presence of organic solutes. A thorough optimization of the matrix design was aimed at granting optimal diffusion of the reagents, in order to maintain the efficiency of the catalytic action. Such combined features allowed the implementation and prototyping of a colorimetric method for the detection of mercury in environmental water samples. The assay was based on a chromogenic reaction catalyzed by the peroxidase-like activity of PtNPs and its specific inhibition caused by trace amounts of mercury.

6.
Biochim Biophys Acta ; 1834(9): 1813-23, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23485914

ABSTRACT

Functional and structural properties of protoglobin from Methanosarcina acetivorans, whose Cys(101)E20 residue was mutated to Ser (MaPgb*), and of mutants missing either the first 20 N-terminal amino acids (MaPgb*-ΔN20 mutant), or the first 33 N-terminal amino acids [N-terminal loop of 20 amino acids and a 13-residue Z-helix, preceding the globin fold A-helix; (MaPgb*-ΔN20Z mutant)] have been investigated. In keeping with the MaPgb*-ΔN20 mutant crystal structure, here reported at 2.0Å resolution, which shows an increased exposure of the haem propionates to the solvent, the analysis of ligand binding kinetics highlights high accessibility of ligands to the haem pocket in ferric MaPgb*-ΔN20. CO binding to ferrous MaPgb*-ΔN20 displays a marked biphasic behavior, with a fast binding process close to that observed in MaPgb* and a slow carbonylation process, characterized by a rate-limiting step. Conversely, removal of the first 33 residues induces a substantial perturbation of the overall MaPgb* structure, with loss of α-helical content and potential partial collapse of the protein chain. As such, ligand binding kinetics are characterized by very slow rates that are independent of ligand concentration, this being indicative of a high energy barrier for ligand access to the haem, possibly due to localized misfolding. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Subject(s)
Globins/chemistry , Globins/metabolism , Heme/metabolism , Methanosarcina/metabolism , Protein Carbonylation , Amino Acid Sequence , Azides/chemistry , Azides/metabolism , Carbon Monoxide/metabolism , Globins/genetics , Heme/chemistry , Kinetics , Molecular Sequence Data , Mutation/genetics , Nitric Oxide/metabolism , Protein Binding , Protein Structure, Secondary , Sequence Homology, Amino Acid
7.
J Am Chem Soc ; 135(1): 22-5, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23240907

ABSTRACT

In addition to inhibiting the cyclooxygenase (COX)-mediated biosynthesis of prostanoids, various widely used nonsteroidal anti-inflammatory drugs (NSAIDs) enhance endocannabinoid signaling by blocking the anandamide-degrading membrane enzyme fatty acid amide hydrolase (FAAH). The X-ray structure of FAAH in complex with the NSAID carprofen, along with site-directed mutagenesis, enzyme activity assays, and NMR analysis, has revealed the molecular details of this interaction, providing information that may guide the design of dual FAAH-COX inhibitors with superior analgesic efficacy.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carbazoles/pharmacology , Amidohydrolases/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Binding Sites/drug effects , Carbazoles/chemistry , Dose-Response Relationship, Drug , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...