Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Cerebellum ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639874

ABSTRACT

The present study aims to investigate the relationship between cerebellar volumes and cognitive reserve in individuals with Mild Cognitive Impairment (MCI). A description of proxies of cerebellar cognitive reserve in terms of different volumes across lobules is also provided. 36 individuals with MCI underwent neuropsychological (MoCA, MMSE, Clock test, CRIq) assessment and neuroimaging acquisition with magnetic resonance imaging at 3 T. Simple linear correlations were applied between cerebellar volumes and cognitive measures. Multiple linear regression models were then used to estimate standardized regression coefficients and 95% confidence intervals. Simple linear correlations between cerebellar lobules volumes and cognitive features highlighted a significant association between CRIq_Working activity and specific motor cerebellar volumes: Left_V (ρ = 0.40, p = 0.02), Right_V (r = 0.42, p = 0.002), Vermis_VIIIb (ρ = 0.47, p = 0.003), Left_X (ρ = -0.46, p = 0.002) and Vermis_X (r = 0.35, p = 0.03). Furthermore, CRIq_Working activity scores correlated with certain cerebellar lobules implicated in cognition: Left_Crus_II, Vermis VIIb, Left_IX. MMSE was associated only with the Right_VIIB volume (r = 0.35, p = 0.02), while Clock Drawing Test scores correlated with both Left_Crus_I and Right_Crus_I (r = -0.42 and r = 0.42, p = 0.02, respectively). This study suggests that a higher cognitive reserve is associated with specific cerebellar lobule volumes and that Working activity may play a predominant role in this association. These findings contribute to the understanding of the relationship between cerebellar volumes and cognitive reserve, highlighting the potential modulatory role of Working activity on cerebellum response to cognitive decline.

2.
Neuroimage ; 292: 120603, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38588833

ABSTRACT

Fetal brain development is a complex process involving different stages of growth and organization which are crucial for the development of brain circuits and neural connections. Fetal atlases and labeled datasets are promising tools to investigate prenatal brain development. They support the identification of atypical brain patterns, providing insights into potential early signs of clinical conditions. In a nutshell, prenatal brain imaging and post-processing via modern tools are a cutting-edge field that will significantly contribute to the advancement of our understanding of fetal development. In this work, we first provide terminological clarification for specific terms (i.e., "brain template" and "brain atlas"), highlighting potentially misleading interpretations related to inconsistent use of terms in the literature. We discuss the major structures and neurodevelopmental milestones characterizing fetal brain ontogenesis. Our main contribution is the systematic review of 18 prenatal brain atlases and 3 datasets. We also tangentially focus on clinical, research, and ethical implications of prenatal neuroimaging.


Subject(s)
Atlases as Topic , Brain , Magnetic Resonance Imaging , Neuroimaging , Female , Humans , Pregnancy , Brain/diagnostic imaging , Brain/embryology , Datasets as Topic , Fetal Development/physiology , Fetus/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods
3.
J Cereb Blood Flow Metab ; : 271678X241237974, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443762

ABSTRACT

Brain glucose metabolism, which can be investigated at the macroscale level with [18F]FDG PET, displays significant regional variability for reasons that remain unclear. Some of the functional drivers behind this heterogeneity may be captured by resting-state functional magnetic resonance imaging (rs-fMRI). However, the full extent to which an fMRI-based description of the brain's spontaneous activity can describe local metabolism is unknown. Here, using two multimodal datasets of healthy participants, we built a multivariable multilevel model of functional-metabolic associations, assessing multiple functional features, describing the 1) rs-fMRI signal, 2) hemodynamic response, 3) static and 4) time-varying functional connectivity, as predictors of the human brain's metabolic architecture. The full model was trained on one dataset and tested on the other to assess its reproducibility. We found that functional-metabolic spatial coupling is nonlinear and heterogeneous across the brain, and that local measures of rs-fMRI activity and synchrony are more tightly coupled to local metabolism. In the testing dataset, the degree of functional-metabolic spatial coupling was also related to peripheral metabolism. Overall, although a significant proportion of regional metabolic variability can be described by measures of spontaneous activity, additional efforts are needed to explain the remaining variance in the brain's 'dark energy'.

4.
Sci Rep ; 14(1): 3142, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326324

ABSTRACT

Exploring how the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the major goals of modern neuroscience. At the macroscale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be considered: the directionality of the structural connectome and limitations in explaining networks functions through an undirected measure such as FC. Here, we employed an accurate directed SC of the mouse brain acquired through viral tracers and compared it with single-subject effective connectivity (EC) matrices derived from a dynamic causal model (DCM) applied to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their respective couplings by conditioning on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks; only within sensory motor networks did we observe connections that align in terms of both effective and structural strength.


Subject(s)
Brain , Connectome , Mice , Animals , Brain/diagnostic imaging , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Nerve Net/anatomy & histology
5.
Eur Radiol Exp ; 8(1): 33, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38409562

ABSTRACT

We compared choroid plexus (ChP) manual segmentation on non-contrast-enhanced (non-CE) sequences and reference standard CE T1- weighted (T1w) sequences in 61 multiple sclerosis patients prospectively included. ChP was separately segmented on T1w, T2-weighted (T2w) fluid-attenuated inversion-recovery (FLAIR), and CE-T1w sequences. Inter-rater variability assessed on 10 subjects showed high reproducibility between sequences measured by intraclass correlation coefficient (T1w 0.93, FLAIR 0.93, CE-T1w 0.99). CE-T1w showed higher signal-to-noise ratio and contrast-to-noise ratio (CE-T1w 23.77 and 18.49, T1w 13.73 and 7.44, FLAIR 13.09 and 10.77, respectively). Manual segmentation of ChP resulted 3.073 ± 0.563 mL (mean ± standard deviation) on T1w, 3.787 ± 0.679 mL on FLAIR, and 2.984 ± 0.506 mL on CE-T1w images, with an error of 28.02 ± 19.02% for FLAIR and 3.52 ± 12.61% for T1w. FLAIR overestimated ChP volume compared to CE-T1w (p < 0.001). The Dice similarity coefficient of CE-T1w versus T1w and FLAIR was 0.67 ± 0.05 and 0.68 ± 0.05, respectively. Spatial error distribution per slice was calculated after nonlinear coregistration to the standard MNI152 space and showed a heterogeneous profile along the ChP especially near the fornix and the hippocampus. Quantitative analyses suggest T1w as a surrogate of CE-T1w to estimate ChP volume.Relevance statement To estimate the ChP volume, CE-T1w can be replaced by non-CE T1w sequences because the error is acceptable, while FLAIR overestimates the ChP volume. This encourages the development of automatic tools for ChP segmentation, also improving the understanding of the role of the ChP volume in multiple sclerosis, promoting longitudinal studies.Key points • CE-T1w sequences are considered the reference standard for ChP manual segmentation.• FLAIR sequences showed a higher CNR than T1w sequences but overestimated the ChP volume.• Non-CE T1w sequences can be a surrogate of CE-T1w sequences for manual segmentation of ChP.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Reproducibility of Results , Choroid Plexus/diagnostic imaging , Magnetic Resonance Imaging , Signal-To-Noise Ratio
6.
PLoS Comput Biol ; 20(1): e1011274, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215166

ABSTRACT

The network control theory framework holds great potential to inform neurostimulation experiments aimed at inducing desired activity states in the brain. However, the current applicability of the framework is limited by inappropriate modeling of brain dynamics, and an overly ambitious focus on whole-brain activity control. In this work, we leverage recent progress in linear modeling of brain dynamics (effective connectivity) and we exploit the concept of target controllability to focus on the control of a single region or a small subnetwork of nodes. We discuss when control may be possible with a reasonably low energy cost and few stimulation loci, and give general predictions on where to stimulate depending on the subset of regions one wishes to control. Importantly, using the robustly asymmetric effective connectome instead of the symmetric structural connectome (as in previous research), we highlight the fundamentally different roles in- and out-hubs have in the control problem, and the relevance of inhibitory connections. The large degree of inter-individual variation in the effective connectome implies that the control problem is best formulated at the individual level, but we discuss to what extent group results may still prove useful.


Subject(s)
Connectome , Nerve Net , Nerve Net/physiology , Brain/physiology , Connectome/methods , Magnetic Resonance Imaging
7.
EJNMMI Res ; 13(1): 97, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947880

ABSTRACT

BACKGROUND: The need for arterial blood data in quantitative PET research limits the wider usability of this imaging method in clinical research settings. Image-derived input function (IDIF) approaches have been proposed as a cost-effective and non-invasive alternative to gold-standard arterial sampling. However, this approach comes with its own limitations-partial volume effects and radiometabolite correction among the most important-and varying rates of success, and the use of IDIF for brain PET has been particularly troublesome. MAIN BODY: This paper summarizes the limitations of IDIF methods for quantitative PET imaging and discusses some of the advances that may make IDIF extraction more reliable. The introduction of automated pipelines (both commercial and open-source) for clinical PET scanners is discussed as a way to improve the reliability of IDIF approaches and their utility for quantitative purposes. Survey data gathered from the PET community are then presented to understand whether the field's opinion of the usefulness and validity of IDIF is improving. Finally, as the introduction of next-generation PET scanners with long axial fields of view, ultra-high sensitivity, and improved spatial and temporal resolution, has also brought IDIF methods back into the spotlight, a discussion of the possibilities offered by these state-of-the-art scanners-inclusion of large vessels, less partial volume in small vessels, better description of the full IDIF kinetics, whole-body modeling of radiometabolite production-is included, providing a pathway for future use of IDIF. CONCLUSION: Improvements in PET scanner technology and software for automated IDIF extraction may allow to solve some of the major limitations associated with IDIF, such as partial volume effects and poor temporal sampling, with the exciting potential for accurate estimation of single kinetic rates. Nevertheless, until individualized radiometabolite correction can be performed effectively, IDIF approaches remain confined at best to a few tracers.

8.
Comput Methods Programs Biomed ; 242: 107825, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806120

ABSTRACT

BACKGROUND AND OBJECTIVE: Magnetic resonance imaging of the brain allows to enrich the study of the relationship between cortical morphology, healthy ageing, diseases and cognition. Since manual segmentation of the cerebral cortex is time consuming and subjective, many software packages have been developed. FreeSurfer (FS) and Advanced Normalization Tools (ANTs) are the most used and allow as inputs a T1-weighted (T1w) image or its combination with a T2-weighted (T2w) image. In this study we evaluated the impact of different software and input images on cortical estimates. Additionally, we investigated whether the variation of the results depending on software and inputs is also influenced by age. METHODS: For 240 healthy subjects, cortical thickness was computed with ANTs and FreeSurfer. Estimates were derived using both the T1w image and adding the T2w image. Significant effects due to software, input images and age range were investigated with ANOVA statistical analysis. Moreover, the accuracy of the cortical thickness estimates was assessed based on their age-prediction precision. RESULTS: Using FreeSurfer and ANTs with T1w or T1w-T2w images resulted in significant differences in the cortical thickness estimates. These differences change with the age range of the subjects. Regardless of the images used, the more recent FS version tested exhibited the best performances in terms of age prediction. CONCLUSIONS: Our study points out the importance of i) consistently processing data using the same tool; ii) considering the software, input images and the age range of the subjects when comparing multiple studies.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Humans , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Magnetic Resonance Imaging/methods , Brain , Software , Image Processing, Computer-Assisted/methods
9.
Artif Intell Med ; 143: 102608, 2023 09.
Article in English | MEDLINE | ID: mdl-37673558

ABSTRACT

Brain segmentation is often the first and most critical step in quantitative analysis of the brain for many clinical applications, including fetal imaging. Different aspects challenge the segmentation of the fetal brain in magnetic resonance imaging (MRI), such as the non-standard position of the fetus owing to his/her movements during the examination, rapid brain development, and the limited availability of imaging data. In recent years, several segmentation methods have been proposed for automatically partitioning the fetal brain from MR images. These algorithms aim to define regions of interest with different shapes and intensities, encompassing the entire brain, or isolating specific structures. Deep learning techniques, particularly convolutional neural networks (CNNs), have become a state-of-the-art approach in the field because they can provide reliable segmentation results over heterogeneous datasets. Here, we review the deep learning algorithms developed in the field of fetal brain segmentation and categorize them according to their target structures. Finally, we discuss the perceived research gaps in the literature of the fetal domain, suggesting possible future research directions that could impact the management of fetal MR images.


Subject(s)
Deep Learning , Female , Male , Humans , Fetus/diagnostic imaging , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging
11.
Mult Scler Relat Disord ; 77: 104877, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454566

ABSTRACT

BACKGROUND: Optic pathway is considered an ideal model to study the interaction between inflammation and neurodegeneration in multiple sclerosis (MS). METHODS: Optical Coherence Tomography (OCT) and 3.0 T magnetic resonance imaging (MRI) were acquired in 92 relapsing remitting (RR) MS at clinical onset. Peripapillary RNFL (pRNFL) and macular layers were measured. White matter (WM) and gray matter (GM) lesion volumes (LV), lateral geniculate nucleus (LGN) volume, optic radiations (OR) WM LV, thickness of pericalcarine cortex were evaluated. OCT and MRI control groups (healthy controls [HC]-OCT and HC-MRI) were included. RESULTS: A significant thinning of temporal pRNFL and papillo-macular bundle (PMB) was observed (p<0.001) in 16 (17%) patients presented with monocular optic neuritis (MSON+), compared to 76 MSON- and 30 HC (-15 µm). In MSON-, PMB was reduced (-3 µm) compared to HC OCT (p<0.05). INL total volume was increased both in MSON+ (p<0.001) and MSON- (p = 0.033). Inner retinal layers volumes (macular RNFL, GCL and IPL) were significantly decreased in MSON+ compared to HC (p<0.001) and MSON- (p<0.001). Reduced GCL volume in the parafoveal ring was observed in MSON- compared to HCOCT (p < 0.05). LGN volume was significantly reduced only in MSON+ patients compared to HC-MRI (p<0.001) and MSON- (p<0.007). GCL, IPL and GCIP volumes associated with ipsilateral LGN volume in MSON+ and MSON-. Finally, LGN volume associated with visual cortex thickness with no significant difference between MSON+ and MSON-. CONCLUSIONS: Anterograde trans-synaptic degeneration is early detectable in RRMS presenting with optic neuritis but does not involve LGN.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Optic Neuritis , Humans , Multiple Sclerosis, Relapsing-Remitting/complications , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retrograde Degeneration/pathology , Geniculate Bodies/diagnostic imaging , Geniculate Bodies/pathology , Retina/diagnostic imaging , Retina/pathology , Optic Neuritis/diagnostic imaging , Optic Neuritis/pathology , Tomography, Optical Coherence
12.
J Cereb Blood Flow Metab ; 43(11): 1905-1918, 2023 11.
Article in English | MEDLINE | ID: mdl-37377103

ABSTRACT

Metabolic connectivity (MC) has been previously proposed as the covariation of static [18F]FDG PET images across participants, i.e., across-individual MC (ai-MC). In few cases, MC has been inferred from dynamic [18F]FDG signals, i.e., within-individual MC (wi-MC), as for resting-state fMRI functional connectivity (FC). The validity and interpretability of both approaches is an important open issue. Here we reassess this topic, aiming to 1) develop a novel wi-MC methodology; 2) compare ai-MC maps from standardized uptake value ratio (SUVR) vs. [18F]FDG kinetic parameters fully describing the tracer behavior (i.e., Ki, K1, k3); 3) assess MC interpretability in comparison to structural connectivity and FC. We developed a new approach based on Euclidean distance to calculate wi-MC from PET time-activity curves. The across-individual correlation of SUVR, Ki, K1, k3 produced different networks depending on the chosen [18F]FDG parameter (k3 MC vs. SUVR MC, r = 0.44). We found that wi-MC and ai-MC matrices are dissimilar (maximum r = 0.37), and that the match with FC is higher for wi-MC (Dice similarity: 0.47-0.63) than for ai-MC (0.24-0.39). Our analyses demonstrate that calculating individual-level MC from dynamic PET is feasible and yields interpretable matrices that bear similarity to fMRI FC measures.


Subject(s)
Fluorodeoxyglucose F18 , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Kinetics
13.
Neuroinformatics ; 21(3): 549-563, 2023 07.
Article in English | MEDLINE | ID: mdl-37284977

ABSTRACT

Fetal Magnetic Resonance Imaging (MRI) is an important noninvasive diagnostic tool to characterize the central nervous system (CNS) development, significantly contributing to pregnancy management. In clinical practice, fetal MRI of the brain includes the acquisition of fast anatomical sequences over different planes on which several biometric measurements are manually extracted. Recently, modern toolkits use the acquired two-dimensional (2D) images to reconstruct a Super-Resolution (SR) isotropic volume of the brain, enabling three-dimensional (3D) analysis of the fetal CNS.We analyzed 17 fetal MR exams performed in the second trimester, including orthogonal T2-weighted (T2w) Turbo Spin Echo (TSE) and balanced Fast Field Echo (b-FFE) sequences. For each subject and type of sequence, three distinct high-resolution volumes were reconstructed via NiftyMIC, MIALSRTK, and SVRTK toolkits. Fifteen biometric measurements were assessed both on the acquired 2D images and SR reconstructed volumes, and compared using Passing-Bablok regression, Bland-Altman plot analysis, and statistical tests.Results indicate that NiftyMIC and MIALSRTK provide reliable SR reconstructed volumes, suitable for biometric assessments. NiftyMIC also improves the operator intraclass correlation coefficient on the quantitative biometric measures with respect to the acquired 2D images. In addition, TSE sequences lead to more robust fetal brain reconstructions against intensity artifacts compared to b-FFE sequences, despite the latter exhibiting more defined anatomical details.Our findings strengthen the adoption of automatic toolkits for fetal brain reconstructions to perform biometry evaluations of fetal brain development over common clinical MR at an early pregnancy stage.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Female , Humans , Pregnancy , Pregnancy Trimester, Second , Imaging, Three-Dimensional/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
14.
Sci Rep ; 13(1): 10389, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369744

ABSTRACT

Resting state fMRI has been used in many studies to investigate the impact of brain tumours on functional connectivity (FC). However, these studies have so far assumed that FC is stationary, disregarding the fact that the brain fluctuates over dynamic states. Here we utilised resting state fMRI data from 33 patients with high-grade gliomas and 33 healthy controls to examine the dynamic interplay between resting-state networks and to gain insights into the impact of brain tumours on functional dynamics. By employing Hidden Markov Models, we demonstrated that functional dynamics persist even in the presence of a high-grade glioma, and that patients exhibited a global decrease of connections strength, as well as of network segregation. Furthermore, through a multivariate analysis, we demonstrated that patients' cognitive scores are highly predictive of pathological dynamics, thus supporting our hypothesis that functional dynamics could serve as valuable biomarkers for better understanding the traits of high-grade gliomas.


Subject(s)
Brain Neoplasms , Glioma , Humans , Neural Pathways , Brain , Brain Mapping , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Magnetic Resonance Imaging
15.
Front Neurol ; 14: 1142734, 2023.
Article in English | MEDLINE | ID: mdl-37006484

ABSTRACT

Introduction: There is overwhelming evidence that focal lesions cause structural, metabolic, functional, and electrical disconnection of regions directly and indirectly connected with the site of injury. Unfortunately, methods to study disconnection (positron emission tomography, structural and functional magnetic resonance imaging, electroencephalography) have been applied primarily in isolation without capturing their interaction. Moreover, multi-modal imaging studies applied to focal lesions are rare. Case report: We analyzed with a multi-modal approach the case of a patient presenting with borderline cognitive deficits across multiple domains and recurrent delirium. A post-surgical focal frontal lesion was evident based on the brain anatomical MRI. However, we were able to acquire also simultaneous MRI (structural and functional) and [18F]FDG using a hybrid PET/MRI scan along with EEG recordings. Despite the focality of the primary anatomical lesion, structural disconnection in the white matter bundles extended far beyond the lesion and showed a topographical match with the cortical glucose hypometabolism seen both locally and remotely, in posterior cortices. Similarly, a right frontal delta activity near/at the region of structural damage was associated with alterations of distant occipital alpha power. Moreover, functional MRI revealed even more widespread local and distant synchronization, involving also regions not affected by the structural/metabolic/electrical impairment. Conclusion: Overall, this exemplary multi-modal case study illustrates how a focal brain lesion causes a multiplicity of disconnection and functional impairments that extend beyond the borders of the anatomical irrecoverable damage. These effects were relevant to explain patient's behavior and may be potential targets of neuro-modulation strategies.

16.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36865122

ABSTRACT

How the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the biggest questions of modern neuroscience. At the macro-scale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be taken into account: the directionality of the structural connectome and the limitations of describing network functions in terms of FC. Here, we employed an accurate directed SC of the mouse brain obtained by means of viral tracers, and related it with single-subject effective connectivity (EC) matrices computed by applying a recently developed DCM to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their couplings by conditioning both on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks. Only the connections within sensory motor networks align both in terms of effective and structural strength.

17.
Commun Biol ; 5(1): 1361, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509841

ABSTRACT

During visual exploration, eye movements are controlled by multiple stimulus- and goal-driven factors. We recently showed that the dynamics of eye movements -how/when the eye move- during natural scenes' free viewing were similar across individuals and identified two viewing styles: static and dynamic, characterized respectively by longer or shorter fixations. Interestingly, these styles could be revealed at rest, in the absence of any visual stimulus. This result supports a role of intrinsic activity in eye movement dynamics. Here we hypothesize that these two viewing styles correspond to different spontaneous patterns of brain activity. One year after the behavioural experiments, static and dynamic viewers were called back to the lab to record high density EEG activity during eyes open and eyes closed. Static viewers show higher cortical inhibition, slower individual alpha frequency peak, and longer memory of alpha oscillations. The opposite holds for dynamic viewers. We conclude that some properties of spontaneous activity predict exploratory eye movement dynamics during free viewing.


Subject(s)
Fixation, Ocular , Pattern Recognition, Visual , Humans , Pattern Recognition, Visual/physiology , Eye Movements , Inhibition, Psychological , Motivation
18.
Sci Data ; 9(1): 695, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371503

ABSTRACT

In radiology and oncology, radiomic models are increasingly employed to predict clinical outcomes, but their clinical deployment has been hampered by lack of standardisation. This hindrance has driven the international Image Biomarker Standardisation Initiative (IBSI) to define guidelines for image pre-processing, standardise the formulation and nomenclature of 169 radiomic features and share two benchmark digital phantoms for software calibration. However, to better assess the concordance of radiomic tools, more heterogeneous phantoms are needed. We created two digital phantoms, called ImSURE phantoms, having isotropic and anisotropic voxel size, respectively, and 90 regions of interest (ROIs) each. To use these phantoms, we designed a systematic feature extraction workflow including 919 different feature values (obtained from the 169 IBSI-standardised features considering all possible combinations of feature aggregation and intensity discretisation methods). The ImSURE phantoms will allow to assess the concordance of radiomic software depending on interpolation, discretisation and aggregation methods, as well as on ROI volume and shape. Eventually, we provide the feature values extracted from these phantoms using five open-source IBSI-compliant software.

19.
Neuroimage Clin ; 36: 103219, 2022.
Article in English | MEDLINE | ID: mdl-36209618

ABSTRACT

Gliomas are commonly characterized by neurocognitive deficits that strongly impact patients' and caregivers' quality of life. Surgical resection is the mainstay of therapy, and it can also cause cognitive impairment. An important clinical problem is whether patients who undergo surgery will show post-surgical cognitive impairment above and beyond that present before surgery. The relevant rognostic factors are largely unknown. This study aims to quantify the cognitive impairment in glioma patients 1-week after surgery and to compare different pre-surgical information (i.e., cognitive performance, tumor volume, grading, and lesion topography) towards predicting early post-surgical cognitive outcome. We retrospectively recruited a sample of N = 47 patients affected by high-grade and low-grade glioma undergoing brain surgery for tumor resection. Cognitive performance was assessed before and immediately after (∼1 week) surgery with an extensive neurocognitive battery. Multivariate linear regression models highlighted the combination of predictors that best explained post-surgical cognitive impairment. The impact of surgery on cognitive functioning was relatively small (i.e., 85% of test scores across the whole sample indicated no decline), and pre-operative cognitive performance was the main predictor of early post-surgical cognitive outcome above and beyond information from tumor topography and volume. In fact, structural lesion information did not significantly improve the accuracy of prediction made from cognitive data before surgery. Our findings suggest that post-surgery neurocognitive deficits are only partially explained by preoperative brain damage. The present results suggest the possibility to make reliable, individualized, and clinically relevant predictions from relatively easy-to-obtain information.


Subject(s)
Brain Neoplasms , Glioma , Humans , Retrospective Studies , Quality of Life , Neuropsychological Tests , Glioma/complications , Glioma/surgery , Glioma/pathology , Brain Neoplasms/complications , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Cognition , Brain/pathology
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 243-246, 2022 07.
Article in English | MEDLINE | ID: mdl-36085666

ABSTRACT

Quantification of brain [18F] fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) data requires an input function. A noninvasive alternative to gold-standard arterial sampling is the image-derived input function (IDIF), typically extracted from the internal carotid arteries (ICAs), which are however difficult to segment and subjected to spillover effects. In this work, we evaluated the feasibility of extracting the IDIF from two different vascular sites, i.e., 1) common carotids (CCA) and 2) superior sagittal sinus (SSS), other than 3) ICA in a large group of glioma patients undergoing a dynamic [18F]FDG PET acquisition on a hybrid PET/MR scanner. Comparisons are drawn between the different IDIFs in terms of peak amplitude and shape, as well as between the estimates of fractional uptake rate (Kr) obtained from the different extraction sites in terms of a) grey/white matter average absolute values, b) ratio of grey-to-white matter, and c) spatial patterns for the hemisphere contralateral to the lesion. Clinical Relevance - This work points towards new feasible IDIF extraction sites (CCA in particular) which could allow for fully noninvasive absolute PET quantification in clinical populations.


Subject(s)
Carotid Artery, Internal , Fluorodeoxyglucose F18 , Algorithms , Brain/diagnostic imaging , Humans , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...