Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045258

ABSTRACT

Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines produce standardized, minimally pre-processed data to support a range of potential analyses. However, post-processing is not similarly standardized. While several options for post-processing exist, they tend not to support output from disparate pre-processing pipelines, may have limited documentation, and may not follow BIDS best practices. Here we present XCP-D, which presents a solution to these issues. XCP-D is a collaborative effort between PennLINC at the University of Pennsylvania and the DCAN lab at the University at Minnesota. XCP-D uses an open development model on GitHub and incorporates continuous integration testing; it is distributed as a Docker container or Singularity image. XCP-D generates denoised BOLD images and functional derivatives from resting-state data in either NifTI or CIFTI files, following pre-processing with fMRIPrep, HCP, and ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been downloaded >3,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and reproducible post-processing of fMRI data.

2.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798354

ABSTRACT

The white matter architecture of the human brain undergoes substantial development throughout childhood and adolescence, allowing for more efficient signaling between brain regions that support executive function. Increasingly, the field understands grey matter development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. While white matter development also appears asynchronous, previous studies have largely relied on anatomical atlases to characterize white matter tracts, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Here, we leveraged advances in diffusion modeling and unsupervised machine learning to delineate white matter fiber covariance networks comprised of structurally similar areas of white matter in a cross-sectional sample of 939 youth aged 8-22 years. We then evaluated associations between fiber covariance network structural properties with both age and executive function using generalized additive models. The identified fiber covariance networks aligned with the known architecture of white matter while simultaneously capturing novel spatial patterns of coordinated maturation. Fiber covariance networks showed heterochronous increases in fiber density and cross section that generally followed hierarchically organized temporal patterns of cortical development, with the greatest increases in unimodal sensorimotor networks and the most prolonged increases in superior and anterior transmodal networks. Notably, we found that executive function was associated with structural features of limbic and association networks. Taken together, this study delineates data-driven patterns of white matter network development that support cognition and align with major axes of brain maturation.

3.
Biol Psychiatry ; 92(12): 973-983, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35927072

ABSTRACT

BACKGROUND: The spatial layout of large-scale functional brain networks differs between individuals and is particularly variable in the association cortex, implicated in a broad range of psychiatric disorders. However, it remains unknown whether this variation in functional topography is related to major dimensions of psychopathology in youth. METHODS: The authors studied 790 youths ages 8 to 23 years who had 27 minutes of high-quality functional magnetic resonance imaging data as part of the Philadelphia Neurodevelopmental Cohort. Four correlated dimensions were estimated using a confirmatory correlated traits factor analysis on 112 item-level clinical symptoms, and one overall psychopathology factor with 4 orthogonal dimensions were extracted using a confirmatory factor analysis. Spatially regularized nonnegative matrix factorization was used to identify 17 individual-specific functional networks for each participant. Partial least square regression with split-half cross-validation was conducted to evaluate to what extent the topography of personalized functional networks encodes major dimensions of psychopathology. RESULTS: Personalized functional network topography significantly predicted unseen individuals' major dimensions of psychopathology, including fear, psychosis, externalizing, and anxious-misery. Reduced representation of association networks was among the most important features for the prediction of all 4 dimensions. Further analysis revealed that personalized functional network topography predicted overall psychopathology (r = 0.16, permutation testing p < .001), which drove prediction of the 4 correlated dimensions. CONCLUSIONS: These results suggest that individual differences in functional network topography in association networks is related to overall psychopathology in youth. Such results underscore the importance of considering functional neuroanatomy for personalized diagnostics and therapeutics in psychiatry.


Subject(s)
Individuality , Mental Disorders , Adolescent , Humans , Child , Young Adult , Adult , Psychopathology , Cerebral Cortex , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
4.
Sci Adv ; 8(5): eabj8750, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35119918

ABSTRACT

Adolescence is hypothesized to be a critical period for the development of association cortex. A reduction of the excitation:inhibition (E:I) ratio is a hallmark of critical period development; however, it has been unclear how to assess the development of the E:I ratio using noninvasive neuroimaging techniques. Here, we used pharmacological fMRI with a GABAergic benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate patterns of functional connectivity. In an independent sample of 879 youth (ages 8 to 22 years), this model predicted reductions in the E:I ratio during adolescence, which were specific to association cortex and related to psychopathology. These findings support hypothesized shifts in E:I balance of association cortices during a neurodevelopmental critical period in adolescence.


Subject(s)
Cerebral Cortex , Neuroimaging , Adolescent , Adult , Child , Humans , Magnetic Resonance Imaging , Young Adult
5.
Front Neuroinform ; 15: 678403, 2021.
Article in English | MEDLINE | ID: mdl-34239433

ABSTRACT

The recent and growing focus on reproducibility in neuroimaging studies has led many major academic centers to use cloud-based imaging databases for storing, analyzing, and sharing complex imaging data. Flywheel is one such database platform that offers easily accessible, large-scale data management, along with a framework for reproducible analyses through containerized pipelines. The Brain Imaging Data Structure (BIDS) is the de facto standard for neuroimaging data, but curating neuroimaging data into BIDS can be a challenging and time-consuming task. In particular, standard solutions for BIDS curation are limited on Flywheel. To address these challenges, we developed "FlywheelTools," a software toolbox for reproducible data curation and manipulation on Flywheel. FlywheelTools includes two elements: fw-heudiconv, for heuristic-driven curation of data into BIDS, and flaudit, which audits and inventories projects on Flywheel. Together, these tools accelerate reproducible neuroscience research on the widely used Flywheel platform.

6.
Sci Am ; 321(1): 26, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-39010450
SELECTION OF CITATIONS
SEARCH DETAIL
...