Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 98: 103786, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875214

ABSTRACT

This work aimed to evaluate Coffea canephora's microbiological, chemical, and sensory characteristics at 300 and 600 m elevation plantations processed by the natural method inoculated with yeasts. The coffee was spread on suspended terraces and sprayed with approximately 107 cfu/mL of Meyerozyma caribbica CCMA 1738 or Pichia kluyveri CCMA 1743, separately. Cherries containing bark and parchment were collected during fermentation for microbial groups counting, qPCR, quantification of organic acids, and sugars (HPLC). Volatile compounds (GC-MS) and sensory analyses, cupping test with expert coffee tasters and triangular test with consumers, were performed on roasted coffee beans. The inoculated yeasts persisted during the entire fermentation process. M. caribbica reduced the filamentous fungal population by 63% and 90% in the 300- and 600-m coffees, respectively. The 300-m coffee fruits showed higher concentrations of organic acids in all fermentation times when compared to the 600-m reaching out to 8 times more. Twenty-four volatile compounds were identified in the roasted coffee beans, with the predominance of pyrazines. The 600-m coffee inoculated with M. caribbica showed an increase of more than one point in the score given by certified tasters. Consumers noticed the M. caribbica inoculation in the 300- and 600-m-elevation coffees. M. caribbica is a promising starter culture for Conilon coffee with the potential to increase the beverage quality.


Subject(s)
Coffea/microbiology , Flavoring Agents/chemistry , Yeasts/metabolism , Chromatography, High Pressure Liquid , Coffea/chemistry , Coffea/metabolism , Coffee/chemistry , Fermentation , Flavoring Agents/metabolism , Gas Chromatography-Mass Spectrometry , Humans , Seeds/chemistry , Seeds/metabolism , Seeds/microbiology , Taste , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Yeasts/classification , Yeasts/genetics
2.
World J Microbiol Biotechnol ; 37(3): 51, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33594606

ABSTRACT

This study aimed to assess the microbial diversity in Coffea canephora grown in four different environments of Espirito Santo state, Brazil. Coffee cherries of two different altitudes (300 and 600 m) and two terrain aspects (Southeast-facing and Northwest-facing slopes) were processed by the dry method. Samples were collected during the drying/fermentation process. Microorganisms were counted, isolated, and identified by MALDI-TOF, followed by sequencing of the ribosomal region. Sugars and organic acids were quantified by HPLC and volatile compounds of the roasted coffees were evaluated by GC-MS. Bacteria population presented a significant number of isolates as well as higher counts during the drying/fermentation process with respect to the population of yeasts. The principal genera of microorganisms found were Bacillus, Pichia, Candida, and Meyerozyma. Meyerozyma guilliermondii was the most frequent yeast in all environments. On the other hand, Pichia kluyveri was found only in coffee cherries from the 600 m altitude. The highest concentration of acetic and succinic acids observed was 6.06 mg/g and 0.84 mg/g, respectively. Sucrose concentrations ranged from 0.68 to 5.30 mg/g, fructose from 1.30 to 4.60 mg/g, and glucose from 0.24 to 1.25 mg/g. Thirty-six volatile compounds, belonging to the groups of pyrazines, alcohols, aldehydes, ketones, and furans were identified in roasted coffee, with differences between altitude and terrain aspects. Information about microbial diversity is crucial to better understand the coffee quality and distinct characteristics of coffee produced in different environments.


Subject(s)
Coffea/chemistry , Coffea/microbiology , Desiccation/methods , Food Handling/methods , Alcohols , Bacteria/classification , Brazil , Coffee/chemistry , Coffee/microbiology , Fermentation , Fungi/classification , Gas Chromatography-Mass Spectrometry
3.
Food Res Int ; 119: 499-509, 2019 05.
Article in English | MEDLINE | ID: mdl-30884682

ABSTRACT

The current study aimed obtaining antimicrobial sachets that could be used as preservatives for foods. Basil (BEO) and Pimenta dioica (PDEO) essential oils (EOs) were analyzed by GC-FID and GC-MS and tested against the foodborne bacteria S. aureus, E. coli, L. monocytogenes, P. aeruginosa, S. Enteritidis, and the food-spoilage mold B. nivea. Then, inclusion complexes (ICs) with EOs and ß-cyclodextrin (ß-CD) were prepared as a strategy to reduce volatility and increase the release time of EOs. Eight ICs were prepared by kneading and freeze-drying methods, in two molar ratios, and have been characterized by complementary methods: FT-IR, thermal analysis (DSC and TG/DTG), powder XRD, and solid state 13C NMR. In vitro antimicrobial activities of ICs, both dispersed in agar and loaded in sachets, have also been investigated. Complexation was confirmed for all samples. PDEO-based ICs prepared by kneading method, at both molar ratios, displayed better in vitro antimicrobial activity. The obtained results strongly suggest a potential application of these ICs as natural antimicrobials.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Food Preservatives/chemistry , Food Preservatives/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , Brazil , Escherichia coli/drug effects , Food Preservation/methods , Freeze Drying , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Ocimum basilicum/chemistry , Pimenta/chemistry , Staphylococcus aureus/drug effects , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...