Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(12): e2211531120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913570

ABSTRACT

Mountain ecosystems are exposed to multiple anthropogenic pressures that are reshaping the distribution of plant populations. Range dynamics of mountain plants exhibit large variability with species expanding, shifting, or shrinking their elevational range. Using a dataset of more than 1 million records of common and red-listed native and alien plants, we could reconstruct range dynamics of 1,479 species of the European Alps over the last 30 y. Red-listed species were not able to track climate warming at the leading edge of their distribution, and further experienced a strong erosion of rear margins, resulting in an overall rapid range contraction. Common natives also contracted their range, albeit less drastically, through faster upslope shift at the rear than at the leading edge. By contrast, aliens quickly expanded upslope by moving their leading edge at macroclimate change speed, while keeping their rear margins almost still. Most red-listed natives and the large majority of aliens were warm-adapted, but only aliens showed high competitive abilities to thrive under high-resource and disturbed environments. Rapid upward shifts of the rear edge of natives were probably driven by multiple environmental pressures including climate change as well as land-use change and intensification. The high environmental pressure that populations encounter in the lowlands might constrain the ability of expanding species to shift their range into more natural areas at higher elevations. As red-listed natives and aliens mostly co-occurred in the lowlands, where human pressures are at their highest, conservation should prioritize low-elevation areas of the European Alps.


Subject(s)
Altitude , Ecosystem , Humans , Plants , Adaptation, Physiological , Climate Change
2.
Sci Rep ; 12(1): 1398, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082360

ABSTRACT

Climate change is expected to threaten endemic plants in the Alps. In this context, the factors that may modulate species responses are rarely investigated at a local scale. We analyzed eight alpine narrow endemics of the Dolomites (southeastern Alps) under different predicted climate change scenarios at fine spatial resolutions. We tested possible differences in elevation, topographic heterogeneity and velocity of climate change among areas of gained, lost, or stable climatic habitat. The negative impact of climate change ranged from moderate to severe, depending on scenario and species. Generally, range loss occurred at the lowest elevations, while gained and stable areas were located at highest elevations. For six of the species, climate change velocity had higher values in stable and gained areas than in lost ones. Our findings support the role of topographic heterogeneity in maintaining climatic microrefugia, however, the peculiar topography of the Dolomites, characterized by high altitude plateaus, resulted in high climate change velocity in areas of projected future climatic suitability. Our study supports the usefulness of multiple predictors of spatio-temporal range dynamics for regional climate-adapted management and eventual assisted colonization planning to not overlook or overestimate the potential impact of climate change locally.

3.
Nat Commun ; 11(1): 5835, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203870

ABSTRACT

Mountains are plant biodiversity hotspots considered particularly vulnerable to multiple environmental changes. Here, we quantify population changes and range-shift dynamics along elevational gradients over the last three decades for c. two-thirds of the orchid species of the European Alps. Local extinctions were more likely for small populations, after habitat alteration, and predominated at the rear edge of species' ranges. Except for the most thermophilic species and wetland specialists, population density decreased over time. Declines were more pronounced for rear-edge populations, possibly due to multiple pressures such as climate warming, habitat alteration, and mismatched ecological interactions. Besides these demographic trends, different species exhibited idiosyncratic range shifts with more than 50% of the species lagging behind climate warming. Our study highlights the importance of long-term monitoring of populations and range distributions at fine spatial resolution to be able to fully understand the consequences of global change for orchids.


Subject(s)
Orchidaceae/physiology , Altitude , Climate Change , Ecosystem , Environmental Monitoring , Forests , Italy , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...