Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(20): 202501, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657889

ABSTRACT

We present the first systematic feasibility study of accessing generalized parton distributions of the pion at an electron-ion collider through deeply virtual Compton scattering. Relying on state-of-the-art models for pion GPDs, we show that quarks and gluons interfere destructively, modulating the expected event rate and maximizing it when parton content is generated via radiation from valence dressed quarks. Moreover, gluons are found to induce a sign inversion for the beam-spin asymmetry in every model studied, being a clear signal for pinning down the regime of gluon superiority.

2.
Eur Phys J C Part Fields ; 78(8): 621, 2018.
Article in English | MEDLINE | ID: mdl-30839766

ABSTRACT

Fits to the final combined HERA deep-inelastic scattering cross-section data within the conventional DGLAP framework of QCD have shown some tension at low x and low Q 2 . A resolution of this tension incorporating ln ( 1 / x ) -resummation terms into the HERAPDF fits is investigated using the xFitter program. The kinematic region where this resummation is important is delineated. Such high-energy resummation not only gives a better description of the data, particularly of the longitudinal structure function F L , it also results in a gluon PDF which is steeply rising at low x for low scales, Q 2 ≃ 2.5 GeV 2 , contrary to the fixed-order NLO and NNLO gluon PDF.

3.
Eur Phys J C Part Fields ; 78(4): 321, 2018.
Article in English | MEDLINE | ID: mdl-31007584

ABSTRACT

We present a determination of the parton distribution functions of the proton in which NLO and NNLO fixed-order calculations are supplemented by NLLx small-x resummation. Deep-inelastic structure functions are computed consistently at NLO+NLL x or NNLO+NLL x , while for hadronic processes small-x resummation is included only in the PDF evolution, with kinematic cuts introduced to ensure the fitted data lie in a region where the fixed-order calculation of the hard cross-sections is reliable. In all other respects, the fits use the same methodology and are based on the same global dataset as the recent NNPDF3.1 analysis. We demonstrate that the inclusion of small-x resummation leads to a quantitative improvement in the perturbative description of the HERA inclusive and charm-production reduced cross-sections in the small x region. The impact of the resummation in our fits is greater at NNLO than at NLO, because fixed-order calculations have a perturbative instability at small x due to large logarithms that can be cured by resummation. We explore the phenomenological implications of PDF sets with small-x resummation for the longitudinal structure function F L at HERA, for parton luminosities and LHC benchmark cross-sections, for ultra-high-energy neutrino-nucleus cross-sections, and for future high-energy lepton-proton colliders such as the LHeC.

4.
Eur Phys J C Part Fields ; 77(8): 516, 2017.
Article in English | MEDLINE | ID: mdl-28943800

ABSTRACT

We present NNFF1.0, a new determination of the fragmentation functions (FFs) of charged pions, charged kaons, and protons/antiprotons from an analysis of single-inclusive hadron production data in electron-positron annihilation. This determination, performed at leading, next-to-leading, and next-to-next-to-leading order in perturbative QCD, is based on the NNPDF methodology, a fitting framework designed to provide a statistically sound representation of FF uncertainties and to minimise any procedural bias. We discuss novel aspects of the methodology used in this analysis, namely an optimised parametrisation of FFs and a more efficient [Formula: see text] minimisation strategy, and validate the FF fitting procedure by means of closure tests. We then present the NNFF1.0 sets, and discuss their fit quality, their perturbative convergence, and their stability upon variations of the kinematic cuts and the fitted dataset. We find that the systematic inclusion of higher-order QCD corrections significantly improves the description of the data, especially in the small-z region. We compare the NNFF1.0 sets to other recent sets of FFs, finding in general a reasonable agreement, but also important differences. Together with existing sets of unpolarised and polarised parton distribution functions (PDFs), FFs and PDFs are now available from a common fitting framework for the first time.

5.
Eur Phys J C Part Fields ; 77(10): 663, 2017.
Article in English | MEDLINE | ID: mdl-31997920

ABSTRACT

We present a new set of parton distributions, NNPDF3.1, which updates NNPDF3.0, the first global set of PDFs determined using a methodology validated by a closure test. The update is motivated by recent progress in methodology and available data, and involves both. On the methodological side, we now parametrize and determine the charm PDF alongside the light-quark and gluon ones, thereby increasing from seven to eight the number of independent PDFs. On the data side, we now include the D0 electron and muon W asymmetries from the final Tevatron dataset, the complete LHCb measurements of W and Z production in the forward region at 7 and 8 TeV, and new ATLAS and CMS measurements of inclusive jet and electroweak boson production. We also include for the first time top-quark pair differential distributions and the transverse momentum of the Z bosons from ATLAS and CMS. We investigate the impact of parametrizing charm and provide evidence that the accuracy and stability of the PDFs are thereby improved. We study the impact of the new data by producing a variety of determinations based on reduced datasets. We find that both improvements have a significant impact on the PDFs, with some substantial reductions in uncertainties, but with the new PDFs generally in agreement with the previous set at the one-sigma level. The most significant changes are seen in the light-quark flavor separation, and in increased precision in the determination of the gluon. We explore the implications of NNPDF3.1 for LHC phenomenology at Run II, compare with recent LHC measurements at 13 TeV, provide updated predictions for Higgs production cross-sections and discuss the strangeness and charm content of the proton in light of our improved dataset and methodology. The NNPDF3.1 PDFs are delivered for the first time both as Hessian sets, and as optimized Monte Carlo sets with a compressed number of replicas.

6.
Eur Phys J C Part Fields ; 76(11): 647, 2016.
Article in English | MEDLINE | ID: mdl-28316495

ABSTRACT

We present an unbiased determination of the charm content of the proton, in which the charm parton distribution function (PDF) is parametrized on the same footing as the light quarks and the gluon in a global PDF analysis. This determination relies on the NLO calculation of deep-inelastic structure functions in the FONLL scheme, generalized to account for massive charm-initiated contributions. When the EMC charm structure function dataset is included, it is well described by the fit, and PDF uncertainties in the fitted charm PDF are significantly reduced. We then find that the fitted charm PDF vanishes within uncertainties at a scale [Formula: see text] GeV for all [Formula: see text], independent of the value of [Formula: see text] used in the coefficient functions. We also find some evidence that the charm PDF at large [Formula: see text] and low scales does not vanish, but rather has an "intrinsic" component, very weakly scale dependent and almost independent of the value of [Formula: see text], carrying less than [Formula: see text] of the total momentum of the proton. The uncertainties in all other PDFs are only slightly increased by the inclusion of fitted charm, while the dependence of these PDFs on [Formula: see text] is reduced. The increased stability with respect to [Formula: see text] persists at high scales and is the main implication of our results for LHC phenomenology. Our results show that if the EMC data are correct, then the usual approach in which charm is perturbatively generated leads to biased results for the charm PDF, though at small x this bias could be reabsorbed if the uncertainty due to the charm mass and missing higher orders were included. We show that LHC data for processes, such as high [Formula: see text] and large rapidity charm pair production and [Formula: see text] production, have the potential to confirm or disprove the implications of the EMC data.

SELECTION OF CITATIONS
SEARCH DETAIL
...