Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 180: 55-62, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29103521

ABSTRACT

Water pollution by heavy metals represents a serious problem around the world. Among various treatment techniques for water remediation, adsorption is an effective and versatile method due to the low cost, effectiveness and simplicity. Chitosan is a cationic polysaccharide with an excellent adsorption capacity of heavy metal ions. Chitosan has a high molybdate adsorption capacity (265±1mgg-1) at 20°C and pH 2.7. Participation of hydroxyl groups in the adsorption of molybdate anions was confirmed by FT-IR analysis. SEM images showed that morphological surface changes happen after MoVI adsorption. Continuous adsorption data were best fitted by Modified Dose- Response model. Scale-up of continuous processes was achieved applying bed depth service time (BDST) model. Application of chitosan in molybdate removal from real groundwater samples suggest that this polysaccharide is a good option to be used for household purposes.


Subject(s)
Chitosan/chemistry , Molybdenum/chemistry , Water Purification/methods , Adsorption , Fresh Water/chemistry , Wastewater/chemistry
2.
J Colloid Interface Sci ; 446: 122-32, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25660712

ABSTRACT

Spongomorpha pacifica biomass was evaluated as a new sorbent for Mo(VI) removal from aqueous solution. The maximum sorption capacity was found to be 1.28×10(6)±1×10(4) mg kg(-1) at 20°C and pH 2.0. Sorption kinetics and equilibrium studies followed pseudo-first order and Langmuir adsorption isotherm models, respectively. FTIR analysis revealed that carboxyl and hydroxyl groups were mainly responsible for the sorption of Mo(VI). SEM images show that morphological changes occur at the biomass surface after Mo(VI) sorption. Activation parameters and mean free energies obtained with Dubinin-Radushkevich isotherm model demonstrate that the mechanism of sorption process was chemical sorption. Thermodynamic parameters demonstrate that the sorption process was spontaneous, endothermic and the driven force was entropic. The isosteric heat of sorption decreases with surface loading, indicating that S. pacifica has an energetically non-homogeneous surface. Experimental breakthrough curves were simulated by Thomas and modified dose-response models. The bed depth service time (BDST) model was employed to scale-up the continuous sorption experiments. The critical bed depth, Z0 was determined to be 1.7 cm. S.pacifica biomass showed to be a good sorbent for Mo(VI) and it can be used in continuous treatment of effluent polluted with molybdate ions.


Subject(s)
Biomass , Molybdenum/isolation & purification , Seaweed/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Thermodynamics
3.
Carbohydr Polym ; 114: 1-11, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25263857

ABSTRACT

Selective oxidation of carboxylate groups present in alginic acid by Cr(VI) affords CO2, oxidized alginic acid, and Cr(III) as final products. The redox reaction afforded first-order kinetics in [alginic acid], [Cr(VI)], and [H(+)], at fixed ionic strength and temperature. Kinetic studies showed that the redox reaction proceeds through a mechanism which combines Cr(VI)→Cr(IV)→Cr(II) and Cr(VI)→Cr(IV)→Cr(III) pathways. The mechanism was supported by the observation of free radicals, CrO2(2+) and Cr(V) as reaction intermediates. The reduction of Cr(IV) and Cr(V) by alginic acid was independently studied and it was found to occur more than 10(3) times faster than alginic acid/Cr(VI) reaction, in acid media. At pH 1-3, oxo-chromate(V)-alginic acid species remain in solution during several hours at 15°C. The results showed that this abundant structural polysaccharide present on brown seaweeds is able to reduce Cr(VI/V/IV) or stabilize high-valent chromium depending on pH value.

SELECTION OF CITATIONS
SEARCH DETAIL
...