Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochem Anal ; 34(5): 518-527, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37139918

ABSTRACT

INTRODUCTION: Process analytical technology (PAT) guidance is implemented in the quality assurance of phytocompounds to achieve the Industry 4.0 concept. Near-infrared (NIR) and Raman spectroscopies are feasible for rapid, reliable quantitative analysis through transparent packaging without removing the samples from their original containers. These instruments can serve PAT guidance. OBJECTIVE: This study aimed to develop online portable NIR and Raman spectroscopic methods for quantifying total curcuminoids in turmeric samples through a plastic bag. The method mimicked an in-line measurement mode in PAT compared with placing samples into a glass vessel (at-line mode). MATERIALS AND METHODS: Sixty-three curcuminoid standard-spiked samples were prepared. Then, 15 samples were randomly selected as fixed validation samples, and 40 of the 48 remaining samples were chosen as calibration set. The results obtained from the partial least square regression (PLSR) models constructed by using the spectra acquired from NIR and Raman were compared with the reference values from high-performance liquid chromatography (HPLC). RESULTS: The optimum PLSR model of at-line Raman was achieved with three latent variables and a root mean square error of prediction (RMSEP) of 0.46. Meanwhile, the PLSR model of at-line NIR with one latent variable offered an RMSEP of 0.43. For the in-line mode, PLSR models created from Raman and NIR spectra had one latent variable with RMSEP of 0.49 and 0.42, respectively. The R2 values for prediction were 0.88-0.92. CONCLUSION: The models established from the spectra from portable NIR and Raman spectroscopic devices with the appropriate spectral pretreatments allowed the determination of total curcuminoid contents through plastic bag.


Subject(s)
Curcuma , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Curcuma/chemistry , Powders , Quality Control , Diarylheptanoids , Least-Squares Analysis , Calibration , Plastics
2.
Foods ; 11(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892772

ABSTRACT

Turmeric consumption is continually increasing worldwide. Curcuminoids are major active constituents in turmeric and are associated with numerous health benefits. A combination of spectroscopic methods and chemometrics shows the suitability of turmeric for food quality control due to advantages such as speed, versatility, portability, and no need for sample preparation. Five calibration models to quantify curcuminoids in turmeric were proposed using benchtop and portable devices. The most remarkable results showed that Raman and NIR calibration models present an excellent performance reporting RMSEP of 0.44% w/w and 0.41% w/w, respectively. In addition, the five proposed methods (FT-IR, Raman, and NIR) were compared in terms of precision and accuracy. The results showed that benchtop and portable methods were in good agreement and that there are no significant differences between them. This study aims to foster the use of portable devices for food quality control in situ by demonstrating their suitability for the purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...