Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2322475121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857404

ABSTRACT

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.


Subject(s)
Cold Temperature , KCNQ1 Potassium Channel , Thermosensing , Animals , Female , Male , Mice , Action Potentials/physiology , Ganglia, Spinal/metabolism , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/genetics , Menthol/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Thermosensing/genetics , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics
2.
Cell Mol Life Sci ; 74(2): 339-358, 2017 01.
Article in English | MEDLINE | ID: mdl-27554772

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Neuronal vacuolization and glial activation are pathologic hallmarks in the superoxide dismutase 1 (SOD1) mouse model of ALS. Previously, we found the neuropeptide calcitonin gene-related peptide (CGRP) associated with vacuolization and astrogliosis in the spinal cord of these mice. We now show that CGRP abundance positively correlated with the severity of astrogliosis, but not vacuolization, in several motor and non-motor areas throughout the brain. SOD1 mice harboring a genetic depletion of the ßCGRP isoform showed reduced CGRP immunoreactivity associated with vacuolization, while motor functions, body weight, survival, and astrogliosis were not altered. When CGRP signaling was completely disrupted through genetic depletion of the CGRP receptor component, receptor activity-modifying protein 1 (RAMP1), hind limb muscle denervation, and loss of muscle performance were accelerated, while body weight and survival were not affected. Dampened neuroinflammation, i.e., reduced levels of astrogliosis in the brain stem already in the pre-symptomatic disease stage, and reduced microgliosis and lymphocyte infiltrations during the late disease phase were additional neuropathology features in these mice. On the molecular level, mRNA expression levels of brain-derived neurotrophic factor (BDNF) and those of the anti-inflammatory cytokine interleukin 6 (IL-6) were elevated, while those of several pro-inflammatory cytokines found reduced in the brain stem of RAMP1-deficient SOD1 mice at disease end stage. Our results thus identify an important, possibly dual role of CGRP in ALS pathogenesis.


Subject(s)
Brain/pathology , Calcitonin Gene-Related Peptide/metabolism , Inflammation/metabolism , Inflammation/pathology , Muscle Denervation , Signal Transduction , Superoxide Dismutase-1/genetics , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Cell Death , Chemokines/metabolism , Disease Progression , Gene Expression Regulation , Humans , Hybridization, Genetic , Lymphocytes/pathology , Mice, Mutant Strains , Mice, Transgenic , Models, Biological , Motor Neurons/metabolism , Motor Neurons/pathology , Nerve Growth Factors/metabolism , Receptor Activity-Modifying Protein 1/deficiency , Receptor Activity-Modifying Protein 1/metabolism , Superoxide Dismutase-1/metabolism , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL