Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 261: 115803, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37734258

ABSTRACT

Neurodegenerative processes characterizing Alzheimer's disease (AD) are strictly related to the impairment of cholinergic and glutamatergic neurotransmitter systems which provoke synaptic loss. These experimental evidences still represent the foundation of the actual standard-of-care treatment for AD, albeit palliative, consisting on the coadministration of an acetylcholinesterase inhibitor and the NMDAR antagonist memantine. In looking for more effective treatments, we previously developed a series of galantamine-memantine hybrids where compound 1 (ARN14140) emerged with the best-balanced action toward the targets of interest paired to neuroprotective efficacy in a murine AD model. Unfortunately, it showed a suboptimal pharmacokinetic profile, which required intracerebroventricular administration for in vivo studies. In this work we designed and synthesized new hybrids with fewer rotatable bonds, which is related to higher brain exposure. Particularly, compound 2, bearing a double bond in the tether, ameliorated the biological profile of compound 1 in invitro studies, increasing cholinesterases inhibitory potencies and selective antagonism toward excitotoxic-related GluN1/2B NMDAR over beneficial GluN1/2A NMDAR. Furthermore, it showed increased plasma stability and comparable microsomal stability in vitro, paired with lower half-life and faster clearance in vivo. Remarkably, pharmacokinetic evaluations of compound 2 showed a promising increase in brain uptake in comparison to compound 1, representing the starting point for further chemical optimizations.


Subject(s)
Alzheimer Disease , Galantamine , Humans , Mice , Animals , Galantamine/pharmacokinetics , Memantine/pharmacology , Alzheimer Disease/drug therapy , Acetylcholinesterase , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Receptors, N-Methyl-D-Aspartate
2.
Transl Psychiatry ; 10(1): 150, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32424183

ABSTRACT

The anterior insular cortex plays a key role in the representation of interoceptive effects of drug and natural rewards and their integration with attention, executive function, and emotions, making it a potential target region for intervention to control appetitive behaviors. Here, we investigated the effects of chemogenetic stimulation or inhibition of the anterior insula on alcohol and sucrose consumption. Excitatory or inhibitory designer receptors (DREADDs) were expressed in the anterior insula of alcohol-preferring rats by means of adenovirus-mediated gene transfer. Rats had access to either alcohol or sucrose solution during intermittent sessions. To characterize the brain network recruited by chemogenetic insula stimulation we measured brain-wide activation patterns using pharmacological magnetic resonance imaging (phMRI) and c-Fos immunohistochemistry. Anterior insula stimulation by the excitatory Gq-DREADDs significantly attenuated both alcohol and sucrose consumption, whereas the inhibitory Gi-DREADDs had no effects. In contrast, anterior insula stimulation failed to alter locomotor activity or deprivation-induced water drinking. phMRI and c-Fos immunohistochemistry revealed downstream activation of the posterior insula and medial prefrontal cortex, as well as of the mediodorsal thalamus and amygdala. Our results show the critical role of the anterior insula in regulating reward-directed behavior and delineate an insula-centered functional network associated with the effects of insula stimulation. From a translational perspective, our data demonstrate the therapeutic potential of circuit-based interventions and suggest that potentiation of insula excitability with neuromodulatory methods, such as repetitive transcranial magnetic stimulation (rTMS), could be useful in the treatment of alcohol use disorders.


Subject(s)
Alcoholism , Animals , Appetitive Behavior , Brain , Cerebral Cortex , Magnetic Resonance Imaging , Rats , Transcranial Magnetic Stimulation
3.
Pharmacol Res ; 87: 87-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24993496

ABSTRACT

The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC) family - breast cancer resistance protein (ABCG2 in humans, Abcg2 in rodents) and P-glycoprotein (ABCB1 in humans, Abcb1 in rodents) - play a key role in mediating this process. Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which include the compound URB937 (cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester). To define structure-activity relationships of the interaction of these molecules with Abcg2, in the present study we tested various peripherally restricted and non-restricted O-arylcarbamate FAAH inhibitors for their ability to serve as transport substrates in monolayer cultures of Madin-Darby Canine Kidney-II (MDCKII) cells over-expressing Abcg2. Surprisingly, we found that the majority of compounds tested - even those able to enter the CNS in vivo - were substrates for Abcg2 in vitro. Additional experiments in MDCKII cells overexpressing ABCB1 revealed that only those compounds that were dual substrates for ABCB1 and Abcg2 in vitro were also peripherally restricted in vivo. The extent of such restriction seems to depend upon other physicochemical features of the compounds, in particular the polar surface area. Consistent with these in vitro results, we found that URB937 readily enters the brain in dual knockout mice lacking both Abcg2 and Abcb1, whereas it is either partially or completely excluded from the brain of mice lacking either transporter alone. The results suggest that Abcg2 and Abcb1 act together to restrict the access of URB937 to the CNS.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Amidohydrolases/antagonists & inhibitors , Cannabinoids/pharmacology , Carbamates/pharmacology , ATP-Binding Cassette Transporters/genetics , Amidohydrolases/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cannabinoids/chemistry , Carbamates/chemistry , Dogs , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Knockout , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 20(19): 5918-21, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20727747

ABSTRACT

1-(Benzothiazol-2-yl)-1-(4-chlorophenyl)ethanol (1) was identified as a positive allosteric modulator (PAM) of the CaSR in a functional cell-based assay. This compound belongs to a class of compounds that is structurally distinct from other known positive allosteric modulators, for example, the phenylalkylamines cinacalcet, a modified analog (13) potently suppressed parathyroid hormone (PTH) release in rats, consistent with its profile as a PAM of CaSRs.


Subject(s)
Benzothiazoles/chemistry , Benzyl Alcohols/chemistry , Phenylethyl Alcohol/chemistry , Receptors, Calcium-Sensing/chemistry , Allosteric Regulation , Animals , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , Benzyl Alcohols/pharmacology , Cinacalcet , Drug Evaluation, Preclinical , Humans , Microsomes, Liver/metabolism , Naphthalenes/chemistry , Parathyroid Hormone/metabolism , Phenylethyl Alcohol/chemical synthesis , Phenylethyl Alcohol/pharmacology , Rats , Receptors, Calcium-Sensing/metabolism , Structure-Activity Relationship
5.
Biochem Pharmacol ; 76(9): 1134-41, 2008 Oct 30.
Article in English | MEDLINE | ID: mdl-18761325

ABSTRACT

Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.


Subject(s)
Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/metabolism , Receptors, Vasopressin/agonists , Receptors, Vasopressin/metabolism , Animals , Antidiuretic Agents/administration & dosage , Antidiuretic Agents/chemical synthesis , Deamino Arginine Vasopressin/administration & dosage , Deamino Arginine Vasopressin/chemistry , Deamino Arginine Vasopressin/metabolism , Deamino Arginine Vasopressin/therapeutic use , Diabetes Insipidus/prevention & control , Diabetes Insipidus/urine , Dose-Response Relationship, Drug , Humans , Male , Mice , NIH 3T3 Cells , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Pharmaceutical Preparations/administration & dosage , Rats , Rats, Brattleboro , Vasopressins/deficiency , Vasopressins/genetics , Vasopressins/metabolism , Vasopressins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...