Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 10: 826336, 2022.
Article in English | MEDLINE | ID: mdl-35646881

ABSTRACT

The walking gaits of cursorial quadrupedal mammals tend to be highly stereotyped as a four-beat pattern with interspersed periods of double and triple stance, often with double-hump ground reaction force profiles. This pattern has long been associated with high energetic economy, due to low apparent work. However, there are differing ways of approximating the work performed during walking and, consequently, different interpretations of the primary mechanism leading to high economy. A focus on Net Center of Mass (COM) Work led to the claim that quadrupedal walking is efficient because it effectively trades potential and kinetic energy of the COM. Individual Limbs COM Work instead focuses on the ability of the limbs to manage the trajectory of the COM to limit energetic losses to the ground ("collisions"). By focusing on the COM, both these metrics effectively dismiss the importance of rotation of the elongate quadrupedal body. Limb Extension Work considers work required to extend and contract each limb like a strut, and accounts for the work of body pitching. We tested the prescriptive ability of these approximations of work by optimizing them within a quadrupedal model with two approximations of the body as a point-mass or a rigid distributed mass. Perfect potential-kinetic energy exchange of the COM was possible when optimizing Net COM Work, resulting in highly compliant gaits with duty factors close to one, far different than observed mammalian gaits. Optimizing Individual Limbs COM Work resulted in alternating periods of single limb stance. Only the distributed mass model, with Limb Extension Work as the cost, resulted in a solution similar to the stereotypical mammalian gait. These results suggest that maintaining a near-constant limb length, with distributed contacts, are more important mechanisms of economy than either transduction of potential-kinetic energy or COM collision mitigation for quadrupedal walking.

2.
Sci Rep ; 11(1): 15804, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349146

ABSTRACT

During locomotion, humans sometimes entrain (i.e. synchronize) their steps to external oscillations: e.g. swaying bridges, tandem walking, bouncy harnesses, vibrating treadmills, exoskeletons. Previous studies have discussed the role of nonlinear oscillators (e.g. central pattern generators) in facilitating entrainment. However, the energetics of such interactions are unknown. Given substantial evidence that humans prioritize economy during locomotion, we tested whether reduced metabolic expenditure is associated with human entrainment to vertical force oscillations, where frequency and amplitude were prescribed via a custom mechatronics system during walking. Although metabolic cost was not significantly reduced during entrainment, individuals expended less energy when the oscillation forces did net positive work on the body and roughly selected phase relationships that maximize positive work. It is possible that individuals use mechanical cues to infer energy cost and inform effective gait strategies. If so, an accurate prediction may rely on the relative stability of interactions with the environment. Our results suggest that entrainment occurs over a wide range of oscillation parameters, though not as a direct priority for minimizing metabolic cost. Instead, entrainment may act to stabilize interactions with the environment, thus increasing predictability for the effective implementation of internal models that guide energy minimization.

3.
Am J Phys Anthropol ; 173(4): 760-767, 2020 12.
Article in English | MEDLINE | ID: mdl-32932555

ABSTRACT

What morphological and functional factors allow for the unique and characteristic upright striding walk of the hominin lineage? Predictive models of locomotion that arise from considering mechanisms of energy loss indicate that collision-like losses at the transition between stance limbs are important determinants of bipedal gait. Theoretical predictions argue that these collisional losses can be reduced by having "functional extra legs" which are physically the heel and the toe part of a single anatomical foot. The ideal spacing for these "functional legs" are up to a quarter of a stride length, depending on the model employed. We evaluate the foot in the context of the dynamics of a bipedal system and compare predictions of optimal foot size against empirical data from modern humans, the Laetoli footprint trackways, and chimpanzees walking bipedally. The dynamics-based modeling approach provides substantial insight into how, and why, walking works as it does, even though current models are too simple to make predictions at a level adequate to anticipate specific morphology except at the most general level.


Subject(s)
Biomechanical Phenomena/physiology , Foot/physiology , Gait/physiology , Walking/physiology , Adolescent , Adult , Animals , Anthropology, Physical , Anthropometry , Female , Humans , Male , Middle Aged , Pan troglodytes/physiology , Young Adult
4.
J Exp Biol ; 222(Pt 23)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801848

ABSTRACT

In Asia, flexible bamboo poles are routinely used to carry substantial loads on the shoulder. Various advantages have been attributed to this load-carrying strategy (e.g. reduced energy consumption), but experimental evidence remains inconsistent - possibly because carriers in previous studies were inexperienced. Theoretical models typically neglect the individual's capacity to optimize interactions with the oscillating load, leaving the complete dynamics underexplored. This study used a trajectory optimization model to predict gait adaptations that minimize work-based costs associated with carrying compliant loads and compared the outcomes with naturally selected gait adaptations of experienced pole carriers. Gait parameters and load interactions (e.g. relative amplitude and frequency, phase) were measured in rural farmworkers in Vietnam. Participants carried a range of loads with compliant and rigid poles and the energetic consequences of step frequency adjustments were evaluated using the model. When carrying large loads, the empirical step frequency changes associated with pole type (compliant versus rigid) were largely consistent with model predictions, in terms of direction (increase or decrease) and magnitude (by how much). Work-minimizing strategies explain changes in leg compliance, harmonic frequency oscillations and fluctuations in energetic cost associated with carrying loads on a compliant bamboo pole.


Subject(s)
Energy Metabolism , Gait/physiology , Weight-Bearing , Adult , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Models, Biological
5.
PLoS Comput Biol ; 15(11): e1007444, 2019 11.
Article in English | MEDLINE | ID: mdl-31751339

ABSTRACT

It is widely held that quadrupeds choose steady gaits that minimize their energetic cost of transport, but it is difficult to explore the entire range of possible footfall sequences empirically. We present a simple model of a quadruped that can spontaneously produce any of the thousands of planar footfall sequences available to quadrupeds. The inelastic, planar model consists of two point masses connected with a rigid trunk on massless legs. It requires only center of mass position, hind and forelimb proportions and a stride-length to speed relationship as input. Through trajectory optimization of a work and force-rate cost, and a large sample of random initial guesses, we provide evidence for the global optimality of symmetrical four-beat walking at low speeds and two beat running (trotting) at intermediate speeds. Using input parameters based on measurements in dogs (Canis lupus familiaris), the model predicts the correct phase offset in walking and a realistic walk-trot transition speed. It also spontaneously reproduces the double-hump ground reaction force profile observed in walking, and the smooth single-hump profile observed in trotting. Actuation appears elastic, despite the model's lack of springs, suggesting that spring-like locomotory behaviour emerges as an optimal tradeoff between work minimization and force-rate penalties.


Subject(s)
Energy Metabolism/physiology , Forecasting/methods , Gait/physiology , Animals , Biomechanical Phenomena/physiology , Dogs , Locomotion , Models, Biological , Models, Theoretical , Running/physiology , Walking/physiology
6.
J Exerc Rehabil ; 15(3): 351-357, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31316926

ABSTRACT

The neuromechanical reorganization required to change gaits imposes an energetic cost 75% greater than either a walking or running step at the same speed. By combining walking and running with the requisite gait switching transition steps, an exercise protocol can be generated with virtually any desired metabolic output even at relatively slow treadmill speed. Gait switching increases metabolic demand through discrete events, which can be tolerated more easily by individuals recovering from health problems, just as interval training allows greater work production for healthy individuals. In addition to cardio-respiratory benefits, 'mini-intervals' with frequent gait switching also provides positive effects and attributes such as distributing muscle group activation, re-training neural coordination, and avoiding repetitive joint overloading. It has the added benefit of developing stability during transitions while a safety hand rail is present which can lead to greater stability in more complex natural environments. Finally, increased mental focus may help avoid the monotony of usual treadmill workouts, aiding adherence to an exercise program. We review evidence for the cost increase of the gait transition step and explain the mechanisms involved. We also discuss literature supporting the range of benefits for mini-interval gait switching as a training and rehabilitation tool.

7.
Front Psychol ; 10: 716, 2019.
Article in English | MEDLINE | ID: mdl-31024381

ABSTRACT

Features of gait are determined at multiple levels, from the selection of the gait itself (e.g., walk or run) through the specific parameters utilized (stride length, frequency, etc.) to the pattern of muscular excitation. The ultimate choices are determined neurally, but what is involved with deciding on the appropriate strategy? Human locomotion appears stereotyped not so much because the pattern is predetermined, but because these movement patterns are good solutions for providing movement utilizing the machinery available to the individual (the legs and their requisite components). Under different circumstances the appropriate solution may differ broadly (different gait) or subtly (different parameters). Interpretation of the neural decision making process would benefit from understanding the influences that are utilized in the selection of the appropriate solution in any set of circumstances, including normal conditions. In this review we survey an array of studies that point to energetic cost as a key input to the gait coordination system, and not just an outcome of the gait pattern implemented. We then use that information to rigorously define the construct proposed by Sparrow and Newell (1998) where the effects of environment, organism, and task act as constraints determining the solution set available, and the coordination pattern is then implemented under pressure for energetic economy. The fit between the environment and the organism define affordances that can be actualized. We rely on a novel conceptualization of task that recognizes that the task goal needs to be separated from the mechanisms that achieve it so that the selection of a particular implementation strategy can be exposed and understood. This reformulation of the Sparrow and Newell construct is then linked to the proposed pressure for economy by considering it as an optimization problem, where the most readily selected gait strategy will be the one that achieves the task goal at (or near) the energetic minimum.

8.
J Exp Biol ; 222(Pt 1)2019 01 10.
Article in English | MEDLINE | ID: mdl-30446542

ABSTRACT

This study examined the mechanics of the horizontal to vertical transition used by parkour athletes in wall climbing. We used this task as an alternative to normal running - where the functional options differ substantially - exposing the movement control priorities required to successfully complete the task. Ground reaction forces were measured in several expert parkour athletes and centre of mass trajectory was calculated from force plates embedded in the ground and the wall. Empirical measures were compared with movements predicted by a work-based control optimization model. The model captured the fundamental dynamics of the transition and therefore allowed an exploration of parameter sensitivity for success at the manoeuvre (run-up speed, foot placement, etc.). The optimal transition of both the model and the parkour athletes used a common intermediate run-up speed and appears determined largely by a trade-off between positive and negative leg work that accomplishes the task with minimum overall work.


Subject(s)
Athletes , Leg/physiology , Adult , Biomechanical Phenomena , Humans , Male , Stair Climbing , Young Adult
10.
Gait Posture ; 64: 84-89, 2018 07.
Article in English | MEDLINE | ID: mdl-29883939

ABSTRACT

BACKGROUND: Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. RESEARCH QUESTION: To map and compare the metabolic cost of normal and compliant walking as step length increases. METHODS: 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. RESULTS: For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r2 = 0.92 for normal walking; r2 = 0.65 for compliant walking). SIGNIFICANCE: Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps.


Subject(s)
Energy Metabolism/physiology , Gait/physiology , Leg/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male , Walking/physiology
11.
PLoS One ; 13(5): e0196208, 2018.
Article in English | MEDLINE | ID: mdl-29746480

ABSTRACT

Compliant bamboo poles have long been used for load carriage in Asian cultures. Although this custom differs from Western conventions of rigid body attachments (e.g. backpack), potential benefits include reduced peak shoulder forces as well as metabolic transport cost savings. Evidence that carrying a flexible pole benefits locomotion remains mixed, perhaps in part because the properties of pole design (e.g. bamboo material, structural geometry, etc.) have largely been neglected. These properties influence vibrational forces and consequently, the energy required by the user to manage the oscillations. We collected authentic bamboo poles from northern Vietnam and characterized their design parameters. Four poles were extensively studied in the lab (load-deflection testing, resonance testing, and computed tomography scans of three-dimensional geometry), and 10 others were tested at a rural Vietnamese farm site (basic measures of form and resonance). A mass-spring-damper model was used to characterize a relationship between resonant frequency (which affects the energetics of the pole-carrier system) and pole properties concerning stiffness, damping, etc. Model predictions of resonant frequencies agreed well with empirical data. Although measured properties suggest the poles are not optimally designed to reduce peak oscillation forces, resonant frequencies are within range of a typical human walking cadence, and this is likely to have a consequence on locomotion energetics.


Subject(s)
Models, Biological , Sasa , Walking/physiology , Weight-Bearing , Biomechanical Phenomena , Humans , Locomotion , Vietnam
12.
J Exp Biol ; 221(Pt 3)2018 02 13.
Article in English | MEDLINE | ID: mdl-29217625

ABSTRACT

In gravity below Earth-normal, a person should be able to take higher leaps in running. We asked 10 subjects to run on a treadmill in five levels of simulated reduced gravity and optically tracked centre-of-mass kinematics. Subjects consistently reduced ballistic height compared with running in normal gravity. We explain this trend by considering the vertical take-off velocity (defined as maximum vertical velocity). Energetically optimal gaits should balance the energetic costs of ground-contact collisions (favouring lower take-off velocity), and step frequency penalties such as leg swing work (favouring higher take-off velocity, but less so in reduced gravity). Measured vertical take-off velocity scaled with the square root of gravitational acceleration, following energetic optimality predictions and explaining why ballistic height decreases in lower gravity. The success of work-based costs in predicting this behaviour challenges the notion that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the relationship between take-off velocity and swing cost changes in reduced gravity; the energetic cost of the down-to-up transition for a given vertical take-off velocity does not change with gravity. Because lower gravity allows an elongated swing phase for a given take-off velocity, the motor control system can relax the vertical momentum change in the stance phase, thus reducing ballistic height, without great energetic penalty to leg swing work. Although it may seem counterintuitive, using less 'bouncy' gaits in reduced gravity is a strategy to reduce energetic costs, to which humans seem extremely sensitive.


Subject(s)
Acceleration , Gait , Hypogravity , Running , Adaptation, Physiological , Biomechanical Phenomena , Humans
13.
Front Psychol ; 8: 1571, 2017.
Article in English | MEDLINE | ID: mdl-28979219

ABSTRACT

Available behaviors are determined by the fit between features of the individual and reciprocal features of the environment. Beyond some critical boundary certain behaviors become impossible causing sudden transitions from one movement pattern to another. Parkour athletes have developed multiple movement patterns to deal with their momentum during landing. We were interested in whether drop distance would cause a sudden transition between a two-footed (precision) landing and a load-distributing roll and whether the transition height could be predicted by dynamic and geometric characteristics of individual subjects. Kinematics and ground reaction forces were measured as Parkour athletes stepped off a box from heights that were incrementally increased or decreased from 0.6 to 2.3 m. Individuals were more likely to roll from higher drops; those with greater body mass and less explosive leg power, were more likely to transition to a roll landing at a lower height. At some height a two-footed landing is no longer feasible but for some athletes this height was well within the maximum drop height used in this study. During low drops the primary task constraint of managing momentum could be achieved with either a precision landing or a roll. This meant that participants were free to select their preferred landing strategy, which was only partially influenced by the physical demands of the task. However, athletes with greater leg power appeared capable of managing impulse absorption through a leg mediated strategy up to a greater drop height.

14.
J Exp Biol ; 220(Pt 9): 1654-1662, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28468814

ABSTRACT

To interpret the movement strategies employed in locomotion, it is necessary to understand the source of metabolic cost. Muscles must consume metabolic energy to do work, but also must consume energy to generate force. The energy lost during steady locomotion and, hence, the amount of mechanical work muscles need to perform to replace it can be reduced and, in theory, even eliminated by elastically storing and returning some portion of this energy via the tendons. However, even if muscles do not need to perform any mechanical work, they still must generate sufficient force to tension tendons and support body weight. This study shows that the metabolic cost per hop of human hopping can largely be explained by the cost of producing force over the duration of a hop. Metabolic cost determined via oxygen consumption is compared with theoretical predictions made using a number of different cost functions that include terms for average muscle work, force, force rate and impulse (time integral of muscle force). Muscle impulse alone predicts metabolic cost per hop as well as more complex functions that include terms for muscle work, force and force rate, and explains a large portion (92%) of the variation in metabolic cost per hop. This is equivalent to 1/effective mechanical advantage, explaining a large portion (66%) of the variation in metabolic cost per time per unit body weight. This result contrasts with studies that suggest that muscle force rate or muscle force rate per time determines the metabolic cost per time of force production in other bouncing gaits such as running.


Subject(s)
Energy Metabolism , Locomotion/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male , Muscle, Skeletal/physiology , Oxygen Consumption
15.
Psychon Bull Rev ; 24(6): 1675-1685, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28092079

ABSTRACT

Human locomotion has been well described but is still not well understood. This is largely true because the observable aspects of locomotion-neuromuscular activity that generates forces and motions-relate to both the task solution and the problem being solved. Identifying the fundamental task achieved in locomotion makes it possible to critically evaluate the motor control strategy used to accomplish the task goal. We contend that the readily observed movements and activities of locomotion should be considered mechanism(s). Our proposal is that the fundamental task of walking and running is analogous to flight, and should be defined in terms of the interaction of the individual's mass with the medium in which it moves: a low-density fluid for flight, or the supporting substrate for legged locomotion. A rigorous definition of the fundamental task can help identify the constraints and opportunities that influence its solution and guide the selection of appropriate mechanisms to accomplish the task effectively. The results from robotics-based modeling studies have demonstrated how the interaction of the mass and substrate can be optimized, making the goal of movement a defined trajectory of the individual's mass. We assessed these concepts by evaluating the ground reaction forces generated by an optimization model that satisfies the task but uses none of the mechanisms that are available to the human leg. Then we compared this model to normal human walking. Although it is obvious that the specific task of locomotion changes with a variety of movement challenges, clearly identifying the fundamental task of locomotion puts all other features in an interpretable context.


Subject(s)
Biomechanical Phenomena/physiology , Walking/physiology , Humans
16.
J Exp Biol ; 220(Pt 2): 167-170, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27875261

ABSTRACT

Metabolic rate appears to increase with the rate of force application for running. Leg function during ground contact is similar in hopping and running, so one might expect that this relationship would hold for hopping as well. Surprisingly, metabolic rate appeared to decrease with increasing force rate for hopping. However, this paradox is the result of comparing different cross-sections of the metabolic cost landscapes for hopping and running. The apparent relationship between metabolic rate and force rate observed in treadmill running is likely not a fundamental characteristic of muscle physiology, but a result of runners responding to speed constraints, i.e. runners selecting step frequencies that minimize metabolic cost per distance for a series of treadmill-specified speeds. Evaluating hopping metabolic rate over a narrow range of hop frequencies similar to that selected by treadmill runners yields energy use trends similar to those of running.


Subject(s)
Energy Metabolism , Locomotion , Biomechanical Phenomena , Exercise Test , Humans , Oxygen Consumption , Running
17.
PeerJ ; 4: e2190, 2016.
Article in English | MEDLINE | ID: mdl-27413640

ABSTRACT

Background. Although the trot is described as a diagonal gait, contacts of the diagonal pairs of hooves are not usually perfectly synchronized. Although subtle, the timing dissociation between contacts of each diagonal pair could have consequences on gait dynamics and provide insight into the functional strategies employed. This study explores the mechanical effects of different diagonal dissociation patterns when speed was matched between individuals and how these effects link to moderate, natural changes in trotting speed. We anticipate that hind-first diagonal dissociation at contact increases with speed, diagonal dissociation at contact can reduce collision-based energy losses and predominant dissociation patterns will be evident within individuals. Methods. The study was performed in two parts: in the first 17 horses performed speed-matched trotting trials and in the second, five horses each performed 10 trotting trials that represented a range of individually preferred speeds. Standard motion capture provided kinematic data that were synchronized with ground reaction force (GRF) data from a series of force plates. The data were analyzed further to determine temporal, speed, GRF, postural, mass distribution, moment, and collision dynamics parameters. Results. Fore-first, synchronous, and hind-first dissociations were found in horses trotting at (3.3 m/s ± 10%). In these speed-matched trials, mean centre of pressure (COP) cranio-caudal location differed significantly between the three dissociation categories. The COP moved systematically and significantly (P = .001) from being more caudally located in hind-first dissociation (mean location = 0.41 ± 0.04) through synchronous (0.36 ± 0.02) to a more cranial location in fore-first dissociation (0.32 ± 0.02). Dissociation patterns were found to influence function, posture, and balance parameters. Over a moderate speed range, peak vertical forelimb GRF had a strong relationship with dissociation time (R = .594; P < .01) and speed (R = .789; P < .01), but peak vertical hindlimb GRF did not have a significant relationship with dissociation time (R = .085; P > 0.05) or speed (R = .223; P = .023). Discussion. The results indicate that at moderate speeds individual horses use dissociation patterns that allow them to maintain trunk pitch stability through management of the cranio-caudal location of the COP. During the hoof-ground collisions, reduced mechanical energy losses were found in hind-first dissociations compared to fully synchronous contacts. As speed increased, only forelimb vertical peak force increased so dissociations tended towards hind-first, which shifted the net COP caudally and balanced trunk pitching moments.

18.
Curr Biol ; 25(18): R795-7, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26394100

ABSTRACT

The way we walk determines the energetic investment needed. Humans spontaneously alter their walking style to exploit energetic opportunities. New research demonstrates the sensitivity and timing of this optimization and opens the door to discovering the underlying mechanisms.


Subject(s)
Energy Metabolism , Walking , Humans
19.
Physiol Rep ; 2(10)2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25293602

ABSTRACT

The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5-16 Hz) and strain amplitudes (0.01-0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002-0.05 Wkg(-1)) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4-7 Hz), SDF (4-5 Hz) and SOL (0.5-1 Hz). Nyquist analysis, reflecting the influence of cross-bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers.

20.
Hum Mov Sci ; 36: 154-66, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24974156

ABSTRACT

To evaluate how fundamental gait parameters used in walking (stride length, frequency, speed) are selected by cats we compared stride characteristics selected when walking on a solid surface to those selected when they were constrained to specific stride lengths using a pedestal walkway. Humans spontaneously select substantially different stride length-stride frequency-speed relationships in walking when each of these parameters is constrained, as in walking to a metronome beat (frequency constrained), evenly spaced floor markers (stride length constrained) or on a treadmill (speed constrained). In humans such adjustments largely provide energetic economy under the prescribed walking conditions. Cats show a similar shift in gait parameter selection between conditions as observed in humans. This suggests that cats (and by extension, quadrupedal mammals) also select gait parameters to optimize walking cost-effectiveness. Cats with a profound peripheral sensory deficit (from pyridoxine overdose) appeared to parallel the optimization seen in healthy cats, but without the same level of precision. Recent studies in humans suggest that gait optimization may proceed in two stages - a fast perception-based stage that provides the initial gait selection strategy which is then fine-tuned by feedback. The sensory deficit cats appeared unable to accomplish the feedback-dependent aspect of this process.


Subject(s)
Cats/physiology , Energy Metabolism/physiology , Feedback, Sensory/physiology , Gait/physiology , Walking/physiology , Animals , Biomechanical Phenomena , Humans , Movement , Perception , Pyridoxine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...