Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Kidney Int Rep ; 7(7): 1619-1629, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35812284

ABSTRACT

Introduction: Chronic kidney disease (CKD) is a worldwide disease without cure. Selected renal cells (SRCs) can augment kidney function in animal models. This study correlates the phenotypical characteristics of autologous homologous SRCs (formulated product called Renal Autologous Cell Therapy [REACT]) injected into patients' kidneys with advanced type 2 diabetes-related CKD (D-CKD) to clinical and laboratory findings. Methods: A total of 22 adults with type 2 D-CKD underwent a kidney biopsy followed by 2 subcortical injections of SRCs, 7 ± 3 months apart. There were 2 patients who had only 1 injection. We compared annualized estimated glomerular filtration rate (eGFR) slopes pre- and post-REACT injection using the 2009 CKD-EPI formula for serum creatinine (sCr) and the 2012 CKD-EPI Creatinine-Cystatin C equation and report clinical/laboratory changes. Fluorescent Activated Cell Sorting (FACS) Analysis for renal progenitor lineages in REACT and donor vascular endothelial growth factor A (VEGF-A) analysis were performed. Longitudinal parameter changes were analyzed with longitudinal linear mixed effects model. Results: At baseline, the mean diabetes duration was 18.4 ± 8.80 years, glycated hemoglobin (Hgb) was 7.0 ± 1.05, and eGFR was 40.3 ± 9.35 ml/min per 1.73 m2 using the 2012 CKD-EPI cystatin C and sCr formulas. The annualized eGFR slope (2012 CKD-EPI) was -4.63 ml/min per 1.73 m2 per year pre-injection and improved to -1.69 ml/min per 1.73 m2 per year post-injection (P = 0.015). There were 7 patients who had an eGFR slope of >0 ml/min per 1.73 m2 postinjection. SRCs were found to have cell markers of ureteric bud, mesenchyme cap, and podocyte sources and positive VEGF. There were 2 patients who had remote fatal adverse events determined as unrelated with the biopsies/injections or the REACT product. Conclusion: Our cell marker analysis suggests that SRCs may enable REACT to stabilize and improve kidney function, possibly halting type 2 D-CKD progression.

2.
Am J Nephrol ; 53(1): 50-58, 2022.
Article in English | MEDLINE | ID: mdl-35034024

ABSTRACT

BACKGROUND: Cell therapies explore unmet clinical needs of patients with chronic kidney disease with the potential to alter the pathway toward end-stage kidney disease. We describe the design and baseline patient characteristics of a phase II multicenter clinical trial utilizing the novel renal autologous cell therapy (REACT), by direct kidney parenchymal injection via the percutaneous approach in adults with type 2 diabetic kidney disease (T2DKD), to delay or potentially avoid renal replacement therapy. DESIGN: The study conducted a prospective, multicenter, randomized control, open-label, phase II clinical trial between an active treatment group (ATG) receiving REACT from the beginning of the trial and a contemporaneous deferred treatment group (DTG) receiving standard of care for 12 months before crossing over to receive REACT. OBJECTIVES: The objective of this study was to establish the safety and efficacy of 2 REACT injections with computed tomography guidance, into the renal cortex of patients with T2DKD administered 6 months apart, and to compare the longitudinal change in renal function between the ATG and the DTG. SETTING: This was a multicenter study conducted in major US hospitals. PATIENTS: We enrolled eighty-three adult patients with T2DKD, who have estimated glomerular filtration rates (eGFRs) between 20 and 50 mL/min/1.73 m2. METHODS: All patients undergo an image-guided percutaneous kidney biopsy to obtain epithelial phenotype selective renal cells isolated from the kidney tissue that is then expanded ex vivo over 4-6 weeks, resulting in the REACT biologic product. Patients are randomized 1:1 into the ATG or the DTG. Primary efficacy endpoints for both study groups include eGFR measurements at baseline and at 3-month intervals, through 24 months after the last REACT injection. Safety analyses include biopsy-related complications, REACT injection, and cellular-related adverse events. The study utilizes Good Clinical and Manufacturing Practices and a Data and Safety Monitoring Board. The sample size confers a statistical power of 80% to detect an eGFR change in the ATG compared to the DTG at 24 months with an α = 0.05. LIMITATIONS: Blinding cannot occur due to the intent to treat procedure, biopsy in both groups, and open trial design. CONCLUSION: This multicenter phase II randomized clinical trial is designed to determine the efficacy and safety of REACT in improving or stabilizing renal function among patients with T2DKD stages 3a-4.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Cell- and Tissue-Based Therapy , Clinical Trials as Topic , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Diabetic Nephropathies/diagnosis , Female , Glomerular Filtration Rate , Humans , Kidney/physiology , Male , Prospective Studies , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/therapy , Treatment Outcome
3.
Blood Purif ; 50(4-5): 678-683, 2021.
Article in English | MEDLINE | ID: mdl-33647913

ABSTRACT

BACKGROUND: Advanced cell therapies with autologous, homologous cells show promise to affect reparative and restorative changes in the chronic kidney disease (CKD) nephron. We present our protocol and preliminary analysis of an IRB-approved, phase I single-group, open-label trial that tests the safety and efficacy of Renal Autologous Cell Therapy (REACT; NCT04115345) in adults with congenital anomalies of the kidney and urinary tract (CAKUT). METHODS: Adults with surgically corrected CAKUT and CKD stages 3 and 4 signed an informed consent and served as their "own" baseline control. REACT is an active biological ingredient acquired from a percutaneous tissue acquisition from the patient's kidney cortex. The specimen undergoes a GMP-compliant manufacturing process that harvests the selected renal cells composed of progenitors for renal repair, followed by image-guided locoregional reinjection into the patient's renal cortex. Participants receive 2 doses at 6-month intervals. Primary outcomes are stable renal function and stable/improved quality of life. Additional exploratory endpoints include the impact of REACT on blood pressure, vitamin D levels, hemoglobin, hematocrit and kidney volume by MRI analysis. RESULTS: Four men and 1 woman were enrolled and underwent 5 cell injections. Their characteristics were as follows: mean 52.8 years (SD 17.7 years), 1 Hispanic, 4 non-Hispanic, and 5 white. There were no renal tissue acquisition, cell injection, or cell product-related complications at baseline. CONCLUSION: REACT is demonstrating feasibility and patient safety in preliminary analysis. Autologous cell therapy treatment has the potential to stabilize or improve renal function in CAKUT-associated CKD to delay or avert dialysis. Patient enrollment and follow-up are underway.


Subject(s)
Kidney Cortex/cytology , Renal Insufficiency, Chronic/therapy , Stem Cell Transplantation , Stem Cells/cytology , Transplantation, Autologous , Adult , Cell- and Tissue-Based Therapy , Cells, Cultured , Female , Humans , Male , Middle Aged , Quality of Life , Renal Insufficiency, Chronic/complications , Stem Cell Transplantation/methods , Transplantation, Autologous/methods , Urinary Tract/abnormalities , Young Adult
4.
Tissue Eng Part B Rev ; 23(2): 159-162, 2017 04.
Article in English | MEDLINE | ID: mdl-27771996

ABSTRACT

Regenerative medicine (RM) is a fascinating area of research and innovation. The huge potential of the field has been fairly underexploited so far. Both TERMIS-AM and TERMIS-EU Industry Committees are committed to mentoring and training young entrepreneurs for more successful commercial translation of upstream research. With this objective in mind, the two entities jointly organized an industry symposium during the past TERMIS World Congress (Boston, September 8-11, 2015) and invited senior managers of the RM industry for lectures and panel discussions. One of the two sessions of the symposium-How to overcome obstacles encountered when bringing products to the commercial phase?-aimed to share the inside, real experiences of leaders from TEI Biosciences (an Integra Company), Vericel (formerly Aastrom; acquirer of Genzyme Regenerative Medicine assets), RegenMedTX (formerly Tengion), Mindset Rx, ViThera Pharmaceuticals, and L'Oreal Research & Innovation. The symposium provided practical recommendations for RM product development, for remaining critical and objective when reviewing progress, for keeping solutions simple, and for remaining relevant and persistent.


Subject(s)
Regenerative Medicine/legislation & jurisprudence , Regenerative Medicine/methods , Social Control, Formal , Genetic Therapy/legislation & jurisprudence , Humans , Intellectual Property , Tissue Engineering/legislation & jurisprudence
5.
Kidney Int Rep ; 1(3): 105-113, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29142919

ABSTRACT

INTRODUCTION: Animal models of chronic kidney disease demonstrate that a redundant population of therapeutically bioactive selected renal cells (SRCs) can be delivered to the kidney through intraparenchymal injection and arrest disease progression. Direct injection of SRCs has been shown to attenuate nuclear factor-κB, which is known to drive tissue inflammation, as well as the transforming growth factor-ß-mediated plasminogen activator inhibitor-1 response that drives tissue fibrosis. METHODS: We present experience from the first-in-human clinical study with SRCs. Seven male type 2 diabetic patients (63 ± 2 years of age) with chronic kidney disease stage 3 to 4 (estimated glomerular filtration rate 25 ± 2 ml/min) were recruited. After blood and urine sampling, iohexol clearance, magnetic resonance imaging, and renal scintigraphy, patients underwent ultrasound-guided renal biopsy. Two cores of renal tissue were shipped to the manufacturing plant for cell isolation, culture, and product preparation. Formulated SRCs were transported back to study sites (range 59-87 days after biopsy) for intracortical injection using a retroperitoneoscopic technique. RESULTS: Laparoscopically assisted implantation of SRCs was uneventful in all patients. However, postoperative complications were common and suggest that other techniques of SRC delivery should be used. Kidney volume, split function, and glomerular filtration rate did not change during 12 months of follow-up. An extended 24-month follow-up in 5 of the patients showed a decline in estimated glomerular filtration rate (cystatin C). DISCUSSION: Postoperative complications following retroperitoneoscopic implantation of SRC in the kidney cortex seem to be related to the surgical procedure rather than to injection of the cell product. No changes in renal function were observed during the original 12-month protocol. Beyond the first 12 months after cell implantation, individual renal function began to deteriorate during further follow-up.

6.
Tissue Eng Part A ; 20(11-12): 1565-82, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24665855

ABSTRACT

The Industry Committee of the Tissue Engineering Regenerative Medicine International Society, Americas Chapter (TERMIS-AM) administered a survey to its membership in 2013 to assess the awareness of science requirements in the U.S. Food and Drug Administration (FDA) regulatory process. One hundred forty-four members responded to the survey. Their occupational and geographical representation was representative of the TERMIS-AM membership as a whole. The survey elicited basic demographic information, the degree to which members were involved in tissue engineering technology development, and their plans for future involvement in such development. The survey then assessed the awareness of general FDA scientific practices as well as specific science requirements for regulatory submissions to the Center for Biologics Evaluation and Research (CBER), the Center for Drug Evaluation and Research (CDER), the Center for Devices and Radiological Health (CDRH), and the Office of Combination Projects (OCP). The FDA-specific questions in the survey were culled from guidance documents posted on the FDA web site ( www.fda.gov ). One of the answer options was an opt-out clause that enabled survey respondents to claim a lack of sufficient awareness of the topic to answer the question. This enabled the stratification of respondents on the basis of confidence in the topic. Results indicate that across all occupational groups (academic, business, and government) that are represented in the TERMIS-AM membership, the awareness of FDA science requirements varies markedly. Those who performed best were for-profit company employees, consultants, and government employees; while students, professors, and respondents from outside the USA performed least well. Confidence in question topics was associated with increased correctness in responses across all groups, though the association between confidence and the ability to answer correctly was poorest among students and professors. Though 80% of respondents claimed involvement in the development of a tissue engineering technology, their responses were no more correct than those who were not. Among those developing tissue engineering technologies, few are taking advantage of existing standards organizations to strengthen their regulatory submissions. The data suggest that early exposure to regulatory experts would be of value for those seeking to bring their technology to the market. For all groups studied but especially for students and professors, formal initial or continuing education in Regulatory Science should be considered to best support translational tissue engineering research and development. In addition, the involvement of standards development organizations during tissue engineering technology development is strongly recommended.


Subject(s)
Data Collection , Drug and Narcotic Control , Regenerative Medicine , Science , Societies, Medical , Tissue Engineering , United States Food and Drug Administration , Americas , Demography , Geography , Reproducibility of Results , Statistics as Topic , United States
8.
Cell Transplant ; 22(6): 1023-39, 2013.
Article in English | MEDLINE | ID: mdl-22889490

ABSTRACT

New treatment paradigms that slow or reverse progression of chronic kidney disease (CKD) are needed to relieve significant patient and healthcare burdens. We have shown that a population of selected renal cells (SRCs) stabilized disease progression in a mass reduction model of CKD. Here, we further define the cellular composition of SRCs and apply this novel therapeutic approach to the ZSF1 rat, a model of severe progressive nephropathy secondary to diabetes, obesity, dyslipidemia, and hypertension. Injection of syngeneic SRCs into the ZSF1 renal cortex elicited a regenerative response that significantly improved survival and stabilized disease progression to renal structure and function beyond 1 year posttreatment. Functional improvements included normalization of multiple nephron structures and functions including glomerular filtration, tubular protein handling, electrolyte balance, and the ability to concentrate urine. Improvements to blood pressure, including reduced levels of circulating renin, were also observed. These functional improvements following SRC treatment were accompanied by significant reductions in glomerular sclerosis, tubular degeneration, and interstitial inflammation and fibrosis. Collectively, these data support the utility of a novel renal cell-based approach for slowing renal disease progression associated with diabetic nephropathy in the setting of metabolic syndrome, one of the most common causes of end-stage renal disease.


Subject(s)
Diabetic Nephropathies/pathology , Diabetic Nephropathies/physiopathology , Disease Progression , Kidney Function Tests , Kidney/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Blood Pressure/drug effects , Cell Tracking , Diabetic Nephropathies/drug therapy , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Glomerular Filtration Rate/drug effects , Kidney/drug effects , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Mice , Rats , Rats, Inbred Lew , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...