Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Evol Biol ; 14: 153, 2014 07 09.
Article in English | MEDLINE | ID: mdl-25005355

ABSTRACT

BACKGROUND: Skipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Área de Conservación Guanacaste (ACG), northwestern Costa Rica. RESULTS: Although no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that "Urbanus belli" in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra- and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2. CONCLUSION: These findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes.


Subject(s)
Butterflies/classification , Butterflies/genetics , Animals , Butterflies/microbiology , Cell Nucleus/genetics , Costa Rica , DNA, Ribosomal Spacer/genetics , High-Throughput Nucleotide Sequencing , Mitochondria/genetics , Phylogeny , Wolbachia/genetics
2.
PLoS One ; 7(5): e36514, 2012.
Article in English | MEDLINE | ID: mdl-22567162

ABSTRACT

Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.


Subject(s)
DNA Barcoding, Taxonomic/methods , Insecta/genetics , Insecta/microbiology , Wolbachia/genetics , Animals , DNA, Mitochondrial/genetics , Insecta/classification , Phylogeny
3.
J Immunol Methods ; 376(1-2): 113-24, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22210093

ABSTRACT

Investigation of the molecular processes which control the development and function of lymphocytes is essential for our understanding of humoral immunity, as well as lymphocyte associated pathogenesis. Adenovirus-mediated gene transfer provided a powerful tool to investigate these processes. We have previously demonstrated that adenoviral vector Ad5/F35 transduces plasma cell lines at a higher efficiency than primary B cells, owing to differences in intracellular trafficking. Given that phosphatases are effectors of intracellular trafficking, here we have analyzed the effects of a panel of phosphatase inhibitors on Ad5/F35 transduction efficiency in B lymphocytes in the present study. FACS analysis was conducted to determine Ad5/F35-EYFP transduction efficiency in lymphoid cells, including human primary B cells, following serine/threonine phosphatase (PSP) inhibitor treatment. We further used confocal microscopy to analyze intracellular trafficking and fate of CY3 labeled Ad5/F35 vectors, in PSP treated lymphoid cell. Finally, we analyzed the MAPK pathway by Western blot in PSP treated cells. Adenoviral transduction efficiency was unresponsive to inhibition of PP1 whereas inhibition of PP2A by cantharidic acid, or PP1 and PP2A by okadaic acid, substantially increased transduction efficiency. Importantly, confocal microscopy analyses revealed that inhibition of PP2A shut down adenovirus recycling. Moreover, inhibition of PP2A resulted in increased phosphorylation of AKT, ERK1/2 and MEK1/2. Taken together, these results suggest that Ad5/F35 is more efficiently transduced in cells following PP2A inhibition. Our results are in agreement with reports indicating that PP2A is involved in the formation of recycling vesicles and might be of interest for gene therapy applications.


Subject(s)
B-Lymphocytes/immunology , Protein Phosphatase 2/antagonists & inhibitors , Transduction, Genetic/methods , Adenoviridae/genetics , B-Lymphocytes/virology , Cell Survival/immunology , Enzyme Inhibitors/pharmacology , Gene Transfer Techniques , Genetic Vectors/genetics , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Protein Phosphatase 2/immunology
4.
PLoS One ; 6(8): e19874, 2011.
Article in English | MEDLINE | ID: mdl-21857895

ABSTRACT

BACKGROUND: An intense, 30-year, ongoing biodiversity inventory of Lepidoptera, together with their food plants and parasitoids, is centered on the rearing of wild-caught caterpillars in the 120,000 terrestrial hectares of dry, rain, and cloud forest of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica. Since 2003, DNA barcoding of all species has aided their identification and discovery. We summarize the process and results for a large set of the species of two speciose subfamilies of ACG skipper butterflies (Hesperiidae) and emphasize the effectiveness of barcoding these species (which are often difficult and time-consuming to identify). METHODOLOGY/PRINCIPAL FINDINGS: Adults are DNA barcoded by the Biodiversity Institute of Ontario, Guelph, Canada; and they are identified by correlating the resulting COI barcode information with more traditional information such as food plant, facies, genitalia, microlocation within ACG, caterpillar traits, etc. This process has found about 303 morphologically defined species of eudamine and pyrgine Hesperiidae breeding in ACG (about 25% of the ACG butterfly fauna) and another 44 units indicated by distinct barcodes (n = 9,094), which may be additional species and therefore may represent as much as a 13% increase. All but the members of one complex can be identified by their DNA barcodes. CONCLUSIONS/SIGNIFICANCE: Addition of DNA barcoding to the methodology greatly improved the inventory, both through faster (hence cheaper) accurate identification of the species that are distinguishable without barcoding, as well as those that require it, and through the revelation of species "hidden" within what have long been viewed as single species. Barcoding increased the recognition of species-level specialization. It would be no more appropriate to ignore barcode data in a species inventory than it would be to ignore adult genitalia variation or caterpillar ecology.


Subject(s)
Butterflies/classification , Butterflies/genetics , DNA Barcoding, Taxonomic/methods , Phylogeny , Animal Feed , Animals , Biodiversity , Breeding , Butterflies/growth & development , Costa Rica , Ecology , Electron Transport Complex IV/genetics , Female , Genetic Variation , Geography , Male , Plant Development , Plants/parasitology , Species Specificity , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...