Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 12: 784268, 2021.
Article in English | MEDLINE | ID: mdl-34899400

ABSTRACT

Context and Aim: Lipid overnutrition in female rabbits, from prepuberty, leads to impaired metabolism (dyslipidemia and increased adiposity) and follicular atresia, and, when continued during gestation, affects offspring phenotype with intrauterine growth retardation (IUGR) and leads to placental and lipid metabolism abnormalities. Growth retardation is already observed in embryo stage, indicating a possible implication of periconceptional exposure. The objective of this study was to discriminate the effects of preconception and gestational exposures on feto-placental development. Materials and Methods: Rabbit 1-day zygotes were collected from female donors under control (CD) or high-fat-high-cholesterol (HD) diet and surgically transferred to the left and right uterus, respectively, of each H (n = 6) or C (n = 7) synchronized recipients. Close to term, four combinations, CC (n = 10), CH (n = 13), HC (n = 13), and HH (n = 6), of feto-placental units were collected, for biometry analyses. Fatty acid (FA) profiles were determined in placental labyrinth, decidua, fetal plasma, and fetal liver by gas chromatography and explored further by principal component analysis (PCA). Candidate gene expression was also analyzed by RT-qPCR in the placenta and fetal liver. Data were analyzed by Kruskal-Wallis followed by Dunn's pairwise comparison test. Combinations of different data sets were combined and explored by multifactorial analysis (MFA). Results: Compared to controls, HH fetuses were hypotrophic with reduced placental efficiency and altered organogenesis, CH presented heavier placenta but less efficient, whereas HC presented a normal biometry. However, the MFA resulted in a good separation of the four groups, discriminating the effects of each period of exposure. HD during gestation led to reduced gene expression (nutrient transport and metabolism) and big changes in FA profiles in both tissues with increased membrane linoleic acid, lipid storage, and polyunsaturated-to-saturated FA ratios. Pre-conception exposure had a major effect on fetal biometry and organogenesis in HH, with specific changes in FA profiles (increased MUFAs and decreased LCPUFAs). Conclusion: Embryo origin left traces in end-gestation feto-placental unit; however, maternal diet during gestation played a major role, either negative (HD) or positive (control). Thus, an H embryo developed favorably when transferred to a C recipient (HC) with normal biometry at term, despite disturbed and altered FA profiles.

2.
Chemistry ; 26(64): 14623-14638, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-32579726

ABSTRACT

Requirements for improved catalytic formulations is continuously driving research in hydrotreating (HDT) catalysis for biomass upgrading and heteroatom removal for cleaner fuels. The present work proposes a surface-science approach for the understanding of the genesis of the active (sulfide) phase in model P-doped MoS2 hydrotreating catalysts supported on α-Al2 O3 single crystals. This approach allows one to obtain a surface-dependent insight by varying the crystal orientations of the support. Model phosphorus-doped catalysts are prepared via spin-coating of Mo-P precursor solutions onto four α-Al2 O3 crystal orientations, C(0001), A(11 2 ‾ 0), M(10 1 ‾ 0) and R(1 1 ‾ 02) that exhibit different speciations of surface -OH. 31 P and 95 Mo liquid-state NMR are used to give a comprehensive description of the Mo and P speciation of the phospho-molybdic precursor solution. The speciation of the deposition solution is then correlated with the genesis of the active MoS2 phase. XPS quantification of the surface P/Mo ratio reveal a surface-dependent phosphate aggregation driven by the amount of free phosphates in solution. Phosphates aggregation decreases in the following order C(0001)≫M(10 1 ‾ 0)>A(11 2 ‾ 0), R(1 1 ‾ 02). This evolution can be rationalized by an increasing strength of phosphate/surface interactions on the different α-Al2 O3 surface orientations from the C(0001) to the R(1 1 ‾ 02) plane. Retardation of the sulfidation with temperature is observed for model catalysts with the highest phosphate dispersion on the surface (A(11 2 ‾ 0), R(1 1 ‾ 02)), suggesting that phosphorus strongly intervene in the genesis of the active phase through a close intimacy between phosphates and molybdates. The surface P/Mo ratio appears as a key descriptor to quantify this retarding effect. It is proposed that retardation of sulfidation is driven by two effects: i) a chemical inhibition through formation of hardly reducible mixed molybdo-phosphate structures and ii) a physical inhibition with phosphate clusters inhibiting the growth of MoS2 . The surface-dependent phosphorus doping on model α-Al2 O3 supports can be used as a guide for the rational design of more efficient HDT catalysts on industrial γ-Al2 O3 carrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...