Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 91(4): 1048-62, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20462119

ABSTRACT

Consumers are increasingly being recognized as important drivers of ecological succession, yet it is still hard to predict the nature and direction of consumer effects in nonequilibrium environments. We used stream consumer exclosures and large outdoor mesocosms to study the impact of macroconsumers (i.e., fish and crayfish) on recovery of intermittent prairie streams after drying. In the stream, macroconsumers altered system recovery trajectory by decreasing algal and macroinvertebrate biomass, primary productivity, and benthic nutrient uptake rates. However, macroconsumer influence was transient, and differences between exclosures and controls disappeared after 35 days. Introducing and removing macroconsumers after 28 days resulted mainly in changes to macroinvertebrates. In mesocosms, a dominant consumer (the grazing minnow Phoxinus erythrogaster) reduced macroinvertebrate biomass but had little effect on algal assemblage structure and ecosystem rates during recovery. The weak effect of P. erythrogaster in mesocosms, in contrast to the strong consumer effect in the natural stream, suggests that both timing and diversity of returning consumers are important to their overall influence on stream recovery patterns. Although we found that consumers significantly altered ecosystem structure and function in a system experiencing rapid changes in abiotic and biotic factors following disturbance, consumer effects diminished over time and trajectories converged to similar states with respect to primary producers, in spite of differences in consumer colonization history. Thus, consumer impacts can be substantial in recovering ecosystems and are likely to be dependent on the disturbance regime and diversity of the consumer community.


Subject(s)
Astacoidea/physiology , Droughts , Feeding Behavior , Fishes/physiology , Food Chain , Rivers , Animals , Kansas , Time Factors
2.
Oecologia ; 151(1): 69-81, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17031700

ABSTRACT

We used field and mesocosm experiments to measure effects of southern redbelly dace (Phoxinus erythrogaster), a grazing minnow, on stream ecosystem structure and function. Ecosystem structure was quantified as algal filament length, algal biomass, size distribution of particulate organic matter (POM), algal assemblage structure, and invertebrate assemblage structure, whereas ecosystem function was based on gross and net primary productivity. Our experiments showed that moderate densities of Phoxinus temporarily reduced mean algal filament length and mean size of POM relative to fishless controls. However, there was no detectable effect on algal biomass or ecosystem primary productivity. Several factors could explain the lack of effect of Phoxinus on primary productivity including increased algal production efficiency in grazed treatments or increased grazing by other organisms in fishless treatments. The inability of Phoxinus to reduce algal biomass and system productivity contrasts with experimental results based on other grazing minnows, such as the central stoneroller (Campostoma anomalum), and questions the generality of grazer effects in stream ecosystems. However, environmental venue and the spatial and temporal scale of ecosystem measurements can greatly influence the outcome of these experiments.


Subject(s)
Cyprinidae/physiology , Ecosystem , Eukaryota/growth & development , Feeding Behavior/physiology , Invertebrates/physiology , Rivers , Analysis of Variance , Animals , Biomass , Kansas , Oxygen/metabolism , Photosynthesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...