Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Data Brief ; 54: 110540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868387

ABSTRACT

We present a dataset containing nuclear and chloroplast sequences for 71 species in genus Medicago (Fabaceae), as well as for 8 species in genera Melilotus and Trigonella. Sequence data for a total of 130 samples was obtained with high-throughput sequencing of enriched genomic DNA libraries targeting 61 single-copy nuclear genes from across the Medicago truncatula genome. Chloroplast sequence reads were also generated, allowing for the recovery of chloroplast genome sequences for all 130 samples. A fully-resolved phylogenetic tree was inferred from the chloroplast dataset using maximum-likelihoood methods. More than 80% of accepted Medicago species are represented in this dataset, including three subspecies of Medicago sativa (alfalfa). These data can be further utilised for phylogenetic analyses in Medicago and related genera, but also for probe and primer design and plant breeding studies.

2.
Sci Data ; 10(1): 836, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38016986

ABSTRACT

The Minamata Convention, a global and legally binding treaty that entered into force in 2017, aims to protect human health and the environment from harmful mercury (Hg) effects by reducing anthropogenic Hg emissions and environmental levels. The Conference of the Parties is to periodically evaluate the Convention's effectiveness, starting in 2023, using existing monitoring data and observed trends. Monitoring atmospheric Hg levels has been proposed as a key indicator. However, data gaps exist, especially in the Southern Hemisphere. Here, we present over a decade of atmospheric Hg monitoring data at Amsterdam Island (37.80°S, 77.55°E), in the remote southern Indian Ocean. Datasets include gaseous elemental and oxidised Hg species ambient air concentrations from either active/continuous or passive/discrete acquisition methods, and annual total Hg wet deposition fluxes. These datasets are made available to the community to support policy-making and further scientific advancements.

3.
Heliyon ; 9(3): e14608, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37020937

ABSTRACT

Mercury (Hg) fate and transport research requires more effort to obtain a deep knowledge of its biogeochemical cycle, particularly in the Southern Hemisphere and Tropics that are still missing of distributed monitoring sites. Continuous monitoring of atmospheric Hg concentrations and trend worldwide is relevant for the effectiveness evaluation of the Minamata Convention on Mercury (MCM) actions. In this context, Gaseous Elemental Mercury (GEM) and total mercury (THg) in precipitations were monitored from 2013 to 2019 at the Amsterdam Island Observatory (AMS - 37°48'S, 77°34'E) to provide insights into the Hg pathway in the remote southern Indian Ocean, also considering ancillary dataset of Rn-222, CO2, CO, and CH4. GEM average concentration was 1.06 ± 0.07 ng m-3, with a slight increase during the austral winter due to both higher wind speed over the surface ocean and contributions from southern Africa. In wet depositions, THg average concentration was 2.39 ± 1.17 ng L-1, whereas the annual flux averaged 2.04 ± 0.80 µg m-2 year-1. In general, both GEM and Volume-Weighted Mean Concentration (VWMC) of THg did not show an increasing/decreasing trend over the seven-year period, suggesting a substantial lack of evolution about emission of Hg reaching AMS. Air masses Cluster Analysis and Potential Source Contribution Function showed that oceanic evasion was the main Hg contributor at AMS, while further contributions were attributable to long-range transport events from southern Africa, particularly when the occurrence of El Niño increased the frequency of wildfires.

4.
Plants (Basel) ; 11(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36235450

ABSTRACT

Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.

5.
Front Plant Sci ; 12: 647375, 2021.
Article in English | MEDLINE | ID: mdl-33777082

ABSTRACT

Molecular evolution of ribosomal DNA can be highly dynamic. Hundreds to thousands of copies in the genome are subject to concerted evolution, which homogenizes sequence variants to different degrees. If well homogenized, sequences are suitable for phylogeny reconstruction; if not, sequence polymorphism has to be handled appropriately. Here we investigate non-coding rDNA sequences (ITS/ETS, 5S-NTS) along with the chromosomal organization of their respective loci (45S and 5S rDNA) in diploids of the Hieraciinae. The subtribe consists of genera Hieracium, Pilosella, Andryala, and Hispidella and has a complex evolutionary history characterized by ancient intergeneric hybridization, allele sharing among species, and incomplete lineage sorting. Direct or cloned Sanger sequences and phased alleles derived from Illumina genome sequencing were subjected to phylogenetic analyses. Patterns of homogenization and tree topologies based on the three regions were compared. In contrast to most other plant groups, 5S-NTS sequences were generally better homogenized than ITS and ETS sequences. A novel case of ancient intergeneric hybridization between Hispidella and Hieracium was inferred, and some further incongruences between the trees were found, suggesting independent evolution of these regions. In some species, homogenization of ITS/ETS and 5S-NTS sequences proceeded in different directions although the 5S rDNA locus always occurred on the same chromosome with one 45S rDNA locus. The ancestral rDNA organization in the Hieraciinae comprised 4 loci of 45S rDNA in terminal positions and 2 loci of 5S rDNA in interstitial positions per diploid genome. In Hieracium, some deviations from this general pattern were found (3, 6, or 7 loci of 45S rDNA; three loci of 5S rDNA). Some of these deviations concerned intraspecific variation, and most of them occurred at the tips of the tree or independently in different lineages. This indicates that the organization of rDNA loci is more dynamic than the evolution of sequences contained in them and that locus number is therefore largely unsuitable to inform about species relationships in Hieracium. No consistent differences in the degree of sequence homogenization and the number of 45S rDNA loci were found, suggesting interlocus concerted evolution.

6.
Front Plant Sci ; 11: 591053, 2020.
Article in English | MEDLINE | ID: mdl-33224172

ABSTRACT

The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.

7.
Am J Bot ; 106(9): 1219-1228, 2019 09.
Article in English | MEDLINE | ID: mdl-31535720

ABSTRACT

PREMISE: Although hybridization has played an important role in the evolution of many plant species, phylogenetic reconstructions that include hybridizing lineages have been historically constrained by the available models and data. Restriction-site-associated DNA sequencing (RADseq) has been a popular sequencing technique for the reconstruction of hybridization in the next-generation sequencing era. However, the utility of RADseq for the reconstruction of complex evolutionary networks has not been thoroughly investigated. Conflicting phylogenetic relationships in the genus Medicago have been mainly attributed to hybridization, but the specific hybrid origins of taxa have not been yet clarified. METHODS: We obtained new molecular data from diploid species of Medicago section Medicago using single-digest RADseq to reconstruct evolutionary networks from gene trees, an approach that is computationally tractable with data sets that include several species and complex hybridization patterns. RESULTS: Our analyses revealed that assembly filters to exclusively select a small set of loci with high phylogenetic information led to the most-divergent network topologies. Conversely, alternative clustering thresholds or filters on the number of samples per locus had a lower impact on networks. A strong hybridization signal was detected for M. carstiensis and M. cretacea, while signals were less clear for M. rugosa, M. rhodopea, M. suffruticosa, M. marina, M. scutellata, and M. sativa. CONCLUSIONS: Complex network reconstructions from RADseq gene trees were not robust under variations of the assembly parameters and filters. But when the most-divergent networks were discarded, all remaining analyses consistently supported a hybrid origin for M. carstiensis and M. cretacea.


Subject(s)
High-Throughput Nucleotide Sequencing , Medicago , Base Sequence , Phylogeny , Sequence Analysis, DNA
8.
PeerJ ; 6: e4916, 2018.
Article in English | MEDLINE | ID: mdl-29922511

ABSTRACT

BACKGROUND: Current evidence suggests that for more robust estimates of species tree and divergence times, several unlinked genes are required. However, most phylogenetic trees for non-model organisms are based on single sequences or just a few regions, using traditional sequencing methods. Techniques for massive parallel sequencing or next generation sequencing (NGS) are an alternative to traditional methods that allow access to hundreds of DNA regions. Here we use this approach to resolve the phylogenetic incongruence found in Polystachya Hook. (Orchidaceae), a genus that stands out due to several interesting aspects, including cytological (polyploid and diploid species), evolutionary (reticulate evolution) and biogeographical (species widely distributed in the tropics and high endemism in Brazil). The genus has a notoriously complicated taxonomy, with several sections that are widely used but probably not monophyletic. METHODS: We generated the complete plastid genome of 40 individuals from one clade within the genus. The method consisted in construction of genomic libraries, hybridization to RNA probes designed from available sequences of a related species, and subsequent sequencing of the product. We also tested how well a smaller sample of the plastid genome would perform in phylogenetic inference in two ways: by duplicating a fast region and analyzing multiple copies of this dataset, and by sampling without replacement from all non-coding regions in our alignment. We further examined the phylogenetic implications of non-coding sequences that appear to have undergone hairpin inversions (reverse complemented sequences associated with small loops). RESULTS: We retrieved 131,214 bp, including coding and non-coding regions of the plastid genome. The phylogeny was able to fully resolve the relationships among all species in the targeted clade with high support values. The first divergent species are represented by African accessions and the most recent ones are among Neotropical species. DISCUSSION: Our results indicate that using the entire plastid genome is a better option than screening highly variable markers, especially when the expected tree is likely to contain many short branches. The phylogeny inferred is consistent with the proposed origin of the genus, showing a probable origin in Africa, with later dispersal into the Neotropics, as evidenced by a clade containing all Neotropical individuals. The multiple positions of Polystachya concreta (Jacq.) Garay & Sweet in the phylogeny are explained by allotetraploidy. Polystachya estrellensis Rchb.f. can be considered a genetically distinct species from P. concreta and P. foliosa (Lindl.) Rchb.f., but the delimitation of P. concreta remains uncertain. Our study shows that NGS provides a powerful tool for inferring relationships at low taxonomic levels, even in taxonomically challenging groups with short branches and intricate morphology.

9.
BMC Evol Biol ; 18(1): 9, 2018 Jan 27.
Article in English | MEDLINE | ID: mdl-29374461

ABSTRACT

BACKGROUND: Whole genome duplication plays a central role in plant evolution. There are two main classes of polyploid formation: autopolyploids which arise within one species by doubling of similar homologous genomes; in contrast, allopolyploidy (hybrid polyploidy) arise via hybridization and subsequent doubling of nonhomologous (homoeologous) genomes. The distinction between polyploid origins can be made using gene phylogenies, if alleles from each genome can be correctly retrieved. We examined whether two closely related tetraploid Mediterranean shrubs (Medicago arborea and M. strasseri) have an allopolyploid origin - a question that has remained unsolved despite substantial previous research. We sequenced and analyzed ten low-copy nuclear genes from these and related species, phasing all alleles. To test the efficacy of allele phasing on the ability to recover the evolutionary origin of polyploids, we compared these results to analyses using unphased sequences. RESULTS: In eight of the gene trees the alleles inferred from the tetraploids formed two clades, in a non-sister relationship. Each of these clades was more closely related to alleles sampled from other species of Medicago, a pattern typical of allopolyploids. However, we also observed that alleles from one of the remaining genes formed two clades that were sister to one another, as is expected for autopolyploids. Trees inferred from unphased sequences were very different, with the tetraploids often placed in poorly supported and different positions compared to results obtained using phased alleles. CONCLUSIONS: The complex phylogenetic history of M. arborea and M. strasseri is explained predominantly by shared allotetraploidy. We also observed that an increase in woodiness is correlated with polyploidy in this group of species and present a new possibility that woodiness could be a transgressive phenotype. Correctly phased homoeologues are likely to be critical for inferring the hybrid origin of allopolyploid species, when most genes retain more than one homoeologue. Ignoring homoeologous variation by merging the homoeologues can obscure the signal of hybrid polyploid origins and produce inaccurate results.


Subject(s)
Alleles , Medicago/genetics , Polyploidy , Base Sequence , Evolution, Molecular , Genes, Plant , Hybridization, Genetic , Phylogeny , Population Density , Species Specificity
10.
PLoS One ; 11(10): e0164435, 2016.
Article in English | MEDLINE | ID: mdl-27760182

ABSTRACT

The hypothesis of wide spread reticulate evolution in Tick-Borne Encephalitis virus (TBEV) has recently gained momentum with several publications describing past recombination events involving various TBEV clades. Despite a large body of work, no consensus has yet emerged on TBEV evolutionary dynamics. Understanding the occurrence and frequency of recombination in TBEV bears significant impact on epidemiology, evolution, and vaccination with live vaccines. In this study, we investigated the possibility of detecting recombination events in TBEV by simulating recombinations at several locations on the virus' phylogenetic tree and for different lengths of recombining fragments. We derived estimations of rates of true and false positive for the detection of past recombination events for seven recombination detection algorithms. Our analytical framework can be applied to any investigation dealing with the difficult task of distinguishing genuine recombination signal from background noise. Our results suggest that the problem of false positives associated with low detection P-values in TBEV, is more insidious than generally acknowledged. We reappraised the recombination signals present in the empirical data, and showed that reliable signals could only be obtained in a few cases when highly genetically divergent strains were involved, whereas false positives were common among genetically similar strains. We thus conclude that recombination among wild-type TBEV strains may occur, which has potential implications for vaccination with live vaccines, but that these events are surprisingly rare.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Recombination, Genetic , Encephalitis Viruses, Tick-Borne/immunology , Evolution, Molecular , Phylogeny , Viral Vaccines/immunology
11.
Syst Biol ; 64(3): 448-71, 2015 May.
Article in English | MEDLINE | ID: mdl-25604357

ABSTRACT

There is a rising awareness that species trees are best inferred from multiple loci while taking into account processes affecting individual gene trees, such as substitution model error (failure of the model to account for the complexity of the data) and coalescent stochasticity (presence of incomplete lineage sorting [ILS]). Although most studies have been carried out in the context of dichotomous species trees, these processes operate also in more complex evolutionary histories involving multiple hybridizations and polyploidy. Recently, methods have been developed that accurately handle ILS in allopolyploids, but they are thus far restricted to networks of diploids and tetraploids. We propose a procedure that improves on this limitation by designing a workflow that assigns homoeologs to hypothetical diploid ancestral genomes prior to genome tree construction. Conflicting assignment hypotheses are evaluated against substitution model error and coalescent stochasticity. Incongruence that cannot be explained by stochastic mechanisms needs to be explained by other processes (e.g., homoploid hybridization or paralogy). The data can then be filtered to build multilabeled genome phylogenies using inference methods that can recover species trees, either in the face of substitution model error and coalescent stochasticity alone, or while simultaneously accounting for hybridization. Methods are already available for folding the resulting multilabeled genome phylogeny into a network. We apply the workflow to the reconstruction of the reticulate phylogeny of the plant genus Fumaria (Papaveraceae) with ploidal levels ranging from 2[Formula: see text] to 14[Formula: see text]. We describe the challenges in recovering nuclear NRPB2 homoeologs in high ploidy species while combining in vivo cloning and direct sequencing techniques. Using parametric bootstrapping simulations we assign nuclear homoeologs and chloroplast sequences (four concatenated loci) to their common hypothetical diploid ancestral genomes. As these assignments hinge on effective population size assumptions, we investigate how varying these assumptions impacts the recovered multilabeled genome phylogeny.


Subject(s)
Classification/methods , Fumaria/classification , Fumaria/genetics , Genome, Plant/genetics , Phylogeny , Polyploidy , Chloroplasts/genetics , Sequence Homology
12.
PLoS One ; 9(10): e109704, 2014.
Article in English | MEDLINE | ID: mdl-25329401

ABSTRACT

Next-generation sequencing technology has increased the capacity to generate molecular data for plant biological research, including phylogenetics, and can potentially contribute to resolving complex phylogenetic problems. The evolutionary history of Medicago L. (Leguminosae: Trifoliae) remains unresolved due to incongruence between published phylogenies. Identification of the processes causing this genealogical incongruence is essential for the inference of a correct species phylogeny of the genus and requires that more molecular data, preferably from low-copy nuclear genes, are obtained across different species. Here we report the development of 50 novel LCN markers in Medicago and assess the phylogenetic properties of each marker. We used the genomic resources available for Medicago truncatula Gaertn., hybridisation-based gene enrichment (sequence capture) techniques and Next-Generation Sequencing to generate sequences. This alternative proves to be a cost-effective approach to amplicon sequencing in phylogenetic studies at the genus or tribe level and allows for an increase in number and size of targeted loci. Substitution rate estimates for each of the 50 loci are provided, and an overview of the variation in substitution rates among a large number of low-copy nuclear genes in plants is presented for the first time. Aligned sequences of major species lineages of Medicago and its sister genus are made available and can be used in further probe development for sequence-capture of the same markers.


Subject(s)
Genetic Loci , Genome, Plant , Medicago/genetics , Phylogeny , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
13.
PLoS One ; 7(2): e31981, 2012.
Article in English | MEDLINE | ID: mdl-22384119

ABSTRACT

The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Flavivirus/genetics , Homologous Recombination/genetics , Recombination, Genetic , Animals , Bayes Theorem , Capsid , Encephalitis Viruses, Tick-Borne/metabolism , Encephalitis, Tick-Borne/genetics , Evolution, Molecular , Flavivirus/metabolism , Genome , Humans , Likelihood Functions , Models, Statistical , Phylogeny , Ticks , Time Factors
14.
Vector Borne Zoonotic Dis ; 11(6): 649-58, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21254926

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a flavivirus with major impact on global health. The geographical TBEV distribution is expanding, thus making it pivotal to further characterize the natural virus populations. In this study, we completed the earlier partial sequencing of a TBEV pulled out of a pool of RNA extracted from 115 ticks collected on Torö in the Stockholm archipelago. The total RNA was sufficient for all sequencing of a TBEV genome (Torö-2003), without conventional enrichment procedures such as cell culturing or suckling mice amplification. To our knowledge, this is the first time that the genome of TBEV has been sequenced directly from an arthropod reservoir. The Torö-2003 sequence has been characterized and compared with other TBE viruses. In silico analyses of secondary RNA structures formed by the two untranslated regions revealed a temperature-sensitive structural shift between a closed replicative form and an open AUG accessible form, analogous to a recently described bacterial thermoswitch. Additionally, novel phylogenetic conserved structures were identified in the variable part of the 3'-untranslated region, and their sequence and structure similarity when compared with earlier identified structures suggests an enhancing function on virus replication and translation. We propose that the thermo-switch mechanism may explain the low TBEV prevalence often observed in environmentally sampled ticks. Finally, we were able to detect variations that help in the understanding of virus adaptations to varied environmental temperatures and mammalian hosts through a comparative approach that compares RNA folding dynamics between strains with different mammalian cell passage histories.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Ixodes/virology , RNA, Viral/genetics , Virus Replication/genetics , Animals , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Mice , Temperature , Virus Replication/physiology
15.
Paris; EuropaCorp; 2009.
Monography in French | CidSaúde - Healthy cities | ID: cid-65074

ABSTRACT

1 DVD (1:54 min.). ; son., color., digital/NTSC : 4 3/4 in. Música original Armand Amar, voz de Jacques Gamblin. Conteúdos Em algumas poucas décadas, a humanidade interferiu no equilíbrio estabelecido no planeta em aproximadamente quatro bilhões de anos de evolução. O preço a pagar é alto, mas é tarde demais para ser pessimista. A humanidade tem somente dez anos para reverter essa situação, observar atentamente a extensão da destruição das riquezas da Terra e considerar mudanças em seus padrões de consumo. Ao longo de uma sequência através de 54 países, toda filmada dos céus, Yann Arthus-Bertrand divide conosco sua admiração e preocupação com o planeta e finca a pedra fundamental para mostrar que, juntos, precisamos reconstruí-lo. Audio: Francês, inglês, espanhol.(AU)


Subject(s)
Environmental Health Education , Sustainable Development , Natural Science Disciplines/education , Environment , Ecology , Environmental Imbalance , Audiovisual Aids
SELECTION OF CITATIONS
SEARCH DETAIL
...