Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
MAbs ; 8(1): 141-9, 2016.
Article in English | MEDLINE | ID: mdl-26390837

ABSTRACT

Biologic treatment options such as tumor necrosis factor (TNF) inhibitors have revolutionized the treatment of inflammatory diseases, including rheumatoid arthritis. Recent data suggest, however, that full and long-lasting responses to TNF inhibitors are limited because of the activation of the pro-inflammatory TH17/interleukin (IL)-17 pathway in patients. Therefore, dual TNF/IL-17A inhibition is an attractive avenue to achieve superior efficacy levels in such diseases. Based on the marketed anti-TNF antibody adalimumab, we generated the bispecific TNF/IL-17A-binding FynomAb COVA322. FynomAbs are fusion proteins of an antibody and a Fyn SH3-derived binding protein. COVA322 was characterized in detail and showed a remarkable ability to inhibit TNF and IL-17A in vitro and in vivo. Through its unique mode-of-action of inhibiting simultaneously TNF and the IL-17A homodimer, COVA322 represents a promising drug candidate for the treatment of inflammatory diseases. COVA322 is currently being tested in a Phase 1b/2a study in psoriasis ( ClinicalTrials.gov Identifier: NCT02243787).


Subject(s)
Interleukin-17/antagonists & inhibitors , Psoriasis/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Female , Humans , Interleukin-17/immunology , Male , Mice , Psoriasis/immunology , Tumor Necrosis Factor-alpha/immunology
3.
Mol Cancer Ther ; 13(8): 2030-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24994770

ABSTRACT

Upregulation of HER2 is a hallmark of 20% to 30% of invasive breast cancers, rendering this receptor an attractive target for cancer therapy. Although HER2-targeting agents have provided substantial clinical benefit as cancer therapeutics, there is a need for the development of new agents aiming at circumventing anti-HER2 resistance. On the basis of the approved antibody pertuzumab, we have created a panel of bispecific FynomAbs, which target two epitopes on HER2. FynomAbs are fusion proteins of an antibody and a Fyn SH3-derived binding protein. One bispecific FynomAb, COVA208, was characterized in detail and showed a remarkable ability to induce rapid HER2 internalization and apoptosis in vitro. Moreover, it elicited a strong inhibition of downstream HER2 signaling by reducing HER2, HER3, and EGFR levels in vitro and in vivo. Importantly, COVA208 demonstrated superior activity in four different xenograft models as compared with the approved antibodies trastuzumab and pertuzumab. The bispecific FynomAb COVA208 has the potential to enhance the clinical efficacy and expand the scope of HER2-directed therapies, and delineates a paradigm for designing a new class of antibody-based therapeutics for other receptor targets.


Subject(s)
Antibodies/pharmacology , Antineoplastic Agents/pharmacology , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Apoptosis , Cell Proliferation , Humans , MCF-7 Cells , Mice, Inbred C57BL , Protein Transport , Receptor, ErbB-2/immunology , Receptor, ErbB-3/metabolism , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
J Biol Chem ; 289(20): 14392-8, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24692552

ABSTRACT

Fynomers are small binding proteins derived from the human Fyn SH3 domain. Using phage display technology, Fynomers were generated inhibiting the activity of the proinflammatory cytokine interleukin-17A (IL-17A). One specific Fynomer called 2C1 inhibited human IL-17A in vitro with an IC50 value of 2.2 nm. Interestingly, when 2C1 was genetically fused to the Fc part of a human antibody via four different amino acid linkers to yield bivalent IL-17A binding proteins (each linker differed in length), the 2C1-Fc fusion protein with the longest linker displayed the most potent inhibitory activity. It blocked homodimeric IL-17A with an IC50 value of 21 pm, which corresponds to a hundredfold improved IC50 value as compared to the value obtained with monovalent Fynomer 2C1. In contrast, the 2C1-Fc fusion with the shortest linker showed only an ∼8-fold improved IC50 value of 260 pm. Furthermore, in a mouse model of acute inflammation, we have shown that the most potent 2C1-Fc fusion protein is able to efficiently inhibit IL-17A in vivo. With their suitable biophysical properties, Fynomer-Fc fusion proteins represent new drug candidates for the treatment of IL-17A mediated inflammatory conditions such as psoriasis, psoriatic arthritis, or rheumatoid arthritis.


Subject(s)
Immunoglobulin Fc Fragments/genetics , Interleukin-17/antagonists & inhibitors , Proto-Oncogene Proteins c-fyn/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , src Homology Domains , Amino Acid Sequence , Animals , Humans , Inhibitory Concentration 50 , Mice , Models, Molecular , Molecular Sequence Data , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics
5.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1124-37, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23695257

ABSTRACT

The aspartic protease BACE2 is responsible for the shedding of the transmembrane protein Tmem27 from the surface of pancreatic ß-cells, which leads to inactivation of the ß-cell proliferating activity of Tmem27. This role of BACE2 in the control of ß-cell maintenance suggests BACE2 as a drug target for diabetes. Inhibition of BACE2 has recently been shown to lead to improved control of glucose homeostasis and to increased insulin levels in insulin-resistant mice. BACE2 has 52% sequence identity to the well studied Alzheimer's disease target enzyme ß-secretase (BACE1). High-resolution BACE2 structures would contribute significantly to the investigation of this enzyme as either a drug target or anti-target. Surface mutagenesis, BACE2-binding antibody Fab fragments, single-domain camelid antibody VHH fragments (Xaperones) and Fyn-kinase-derived SH3 domains (Fynomers) were used as crystallization helpers to obtain the first high-resolution structures of BACE2. Eight crystal structures in six different packing environments define an ensemble of low-energy conformations available to the enzyme. Here, the different strategies used for raising and selecting BACE2 binders for cocrystallization are described and the crystallization success, crystal quality and the time and resources needed to obtain suitable crystals are compared.


Subject(s)
Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Immunoglobulin Fab Fragments/chemistry , Insulin-Secreting Cells/enzymology , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Area Under Curve , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Catalytic Domain , Crystallization , Humans , Immunoglobulin Fab Fragments/metabolism , Insulin-Secreting Cells/metabolism , Mice , Models, Molecular , Mutagenesis , Protein Conformation , Surface Plasmon Resonance , X-Ray Diffraction
6.
MAbs ; 4(4): 497-508, 2012.
Article in English | MEDLINE | ID: mdl-22653218

ABSTRACT

The serine protease chymase (EC = 3.4.21.39) is expressed in the secretory granules of mast cells, which are important in allergic reactions. Fynomers, which are binding proteins derived from the Fyn SH3 domain, were generated against human chymase to produce binding partners to facilitate crystallization, structure determination and structure-based drug discovery, and to provide inhibitors of chymase for therapeutic applications. The best Fynomer was found to bind chymase with a KD of 0.9 nM and koff of 6.6x10 (-4) s (-1) , and to selectively inhibit chymase activity with an IC 50 value of 2 nM. Three different Fynomers were co-crystallized with chymase in 6 different crystal forms overall, with diffraction quality in the range of 2.25 to 1.4 Å resolution, which is suitable for drug design efforts. The X-ray structures show that all Fynomers bind to the active site of chymase. The conserved residues Arg15-Trp16-Thr17 in the RT-loop of the chymase binding Fynomers provide a tight interaction, with Trp16 pointing deep into the S1 pocket of chymase. These results confirm the suitability of Fynomers as research tools to facilitate protein crystallization, as well as for the development of assays to investigate the biological mechanism of targets. Finally, their highly specific inhibitory activity and favorable molecular properties support the use of Fynomers as potential therapeutic agents.


Subject(s)
Carrier Proteins/metabolism , Chymases/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , src Homology Domains , Amino Acid Sequence , Binding Sites , Biocatalysis/drug effects , Carrier Proteins/chemistry , Carrier Proteins/genetics , Catalytic Domain , Chymases/chemistry , Chymases/genetics , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Models, Molecular , Peptide Library , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-fyn/genetics
8.
Protein Eng Des Sel ; 20(2): 57-68, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17242027

ABSTRACT

Selection technologies such as phage and ribosome display, which provide a physical linkage between genetic information and encoded polypeptide, are important tools for the engineering of proteins for diagnostic and therapeutic applications. We have recently described a selection strategy called covalent DNA display, in which individual proteins are covalently linked to the cognate encoding DNA template in separate droplets of a water-in-oil emulsion. We here report on the optimization of several experimental steps in covalent DNA display technology, such as the elution conditions and the PCR strategy used for the amplification of selected DNA templates. A PCR assembly strategy was developed, which allows the amplification of the DNA templates over repeated rounds of selection. In addition, we could demonstrate that approximately 50% of the DNA templates form a covalent adduct with the corresponding proteins in the compartments of a water-in-oil emulsion. In model selection experiments, differences in recovery efficiency <100 000 per round of selection could be observed when comparing a specific binding polypeptide with a binder of irrelevant specificity. Furthermore, the optimized protocol was successfully applied for the selection of single domain proteins, capable of specific binding to mouse serum albumin (MSA). A mutant derived from the SH3 domain of the Fyn kinase, with millimolar affinity to MSA, was affinity matured using covalent DNA display and yielded several MSA binding FynSH3 variants with dissociation constants in the 100 nM range.


Subject(s)
DNA-Binding Proteins/isolation & purification , DNA/isolation & purification , Protein Engineering , Proto-Oncogene Proteins c-fyn/metabolism , Amino Acid Sequence , Animals , Base Sequence , DNA/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Emulsions , Genetic Vectors , Mice , Molecular Sequence Data , Peptide Library , Protein Binding , Proto-Oncogene Proteins c-fyn/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomes/metabolism , Serum Albumin/genetics , Serum Albumin/metabolism , Transcription, Genetic , src Homology Domains
9.
Protein Eng Des Sel ; 17(9): 699-707, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15522920

ABSTRACT

We present a novel method for the directed evolution of polypeptides, which combines in vitro compartmentalization and covalent DNA display. A library of linear DNA fragments is co-packaged with an in vitro transcription/translation mixture in the compartments of a water-in-oil emulsion. Experimental conditions are adjusted so that, in most cases, one compartment contains one DNA molecule. The DNA fragments encode fusion proteins containing a DNA-methyltransferase (M.Hae III), which can form a covalent bond with a 5-fluorodeoxycytidine base at the extremity of the DNA fragment. The resulting library of DNA-protein fusions is extracted from the emulsion and DNA molecules displaying a protein with desired binding properties are selected from the pool of DNA-protein fusions by affinity panning on target antigens. We applied this methodology in model selection experiments, using specific ligands for the capture of peptides and globular proteins bound to DNA. We observed enrichment factors >1000-fold for selections performed in separate emulsions and up to 150-fold for selections performed using mixtures of DNA molecules. M.Hae III could be fused to small globular proteins (such as calmodulin and fibronectin domains), which are ideally suited for the generation of combinatorial libraries and for the isolation of novel binding specificities.


Subject(s)
Directed Molecular Evolution/methods , Gene Library , Recombinant Fusion Proteins/chemistry , DNA Adducts , DNA Modification Methylases/genetics , Emulsions , Protein Binding , Protein Biosynthesis , Recombinant Fusion Proteins/chemical synthesis , Templates, Genetic , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...