Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 62-71, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30442347

ABSTRACT

In this work, we aim to provide evidence for the protective effect of a copper chelator, neocuproine (NeoCu), against the oxidative stress in NSC34 cells, which inhibits biomolecule oxidation and cell death. Results obtained with the comet assay allowed to determine the increase in oxidized purines and pyrimidines by H2O2 exposure, and their changes after the addition of NeoCu. We also observed a higher ATP7b activity in nuclei and a higher Cu concentration inside the cells, proving that the NeoCu acts directly in DNA to promote cell recovery in oxidative stress conditions, also observed in Reactive Oxygen Species (ROS) detection assay by Flow Cytometry. Based on these results, we propose that NeoCu is a promising drug for the protection of motor neuron cells during oxidative stress caused by neurodegenerative diseases in this system.


Subject(s)
Chelating Agents/pharmacology , DNA Damage , Hydrogen Peroxide/toxicity , Neuroblastoma/prevention & control , Oxidative Stress/drug effects , Phenanthrolines/pharmacology , Protective Agents/pharmacology , Copper/metabolism , Copper-Transporting ATPases/metabolism , Humans , Neuroblastoma/pathology , Oxidants/toxicity , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
2.
Biochem Biophys Res Commun ; 418(1): 27-32, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22222374

ABSTRACT

The PrP(C) protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP(C) in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP(C) decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu(2+)/ascorbate/H(2)O(2)), which was demonstrated by approximately 70% less DMPO/OH(). In cultured PrP(C)-knockout astrocytes from mice, the absence of PrP(C) caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3h of H(2)O(2) treatment. This rapid increase in ROS disrupted the cell cycle in the PrP(C)-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP(C) in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.


Subject(s)
Astrocytes/physiology , Cytoprotection , Oxidative Stress/genetics , PrPC Proteins/physiology , Animals , Astrocytes/drug effects , Cell Line , Hydrogen Peroxide/pharmacology , Mice , Mice, Knockout , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , PrPC Proteins/genetics , PrPC Proteins/pharmacology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...