Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(14): 22698-22709, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475374

ABSTRACT

A wideband, all-dielectric metamaterial structure for enhancing radiative cooling is investigated. The structure is optimized to reflect most of the solar irradiance window (between 0.3 µm-3 µm), which is one of the biggest challenges in highly efficient radiative cooling coatings. The design is based on the principles of Bragg gratings, which constitutes a simple synthesis procedure to make a broadband reflector of reduced dimensions, without metallic layers, while keeping a flat enough response in the entire bandwidth. Numerical results show that reflection of solar irradiation can be easily tailored and maximized using this method, as well as the net cooling power of the device, about ∼79 W/m2 at daytime (about double at night-time) and a temperature reduction of 23 K (assuming no heat exchange) and 7 K assuming a heat exchange coefficient of 10 W/m2/K, for a device and ambient temperatures of 300 K and 303 K, respectively. This occurs even in detriment of absorption in the atmospheric window (8 µm-13 µm). Results also show the importance of efficiently reflecting solar irradiance for such technologies and its relevance in synthesis and design without using metallic components.

2.
Opt Express ; 24(8): 8848-61, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27137318

ABSTRACT

We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

3.
Opt Lett ; 40(10): 2329-32, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26393731

ABSTRACT

A photonic jet (a terajet at terahertz frequencies) commonly denotes a specific, spatially localized region in the near field on the front side of a dielectric particle with a diameter comparable with the wavelength illuminated by a plane wave on its back side (i.e., the jet emerges from the shadow surface of a dielectric particle). In this Letter, the formation of a photonic jet is demonstrated using the recently proposed three-dimensional (3D) dielectric cuboids working in the "reflection" mode when the specific, spatially localized region is localized in the direction of the incident wavefront. The results of the simulations based on the Finite Integration Technique are discussed. All dimensions are given in wavelength units so that all results can be scaled to any frequency of interest, including optical frequencies, thus simplifying the fabrication process compared with spherical dielectrics. The results presented here may be of interest for novel applications, including microscopy techniques and sensors.

4.
Opt Express ; 23(7): 8555-64, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968693

ABSTRACT

Metamaterial lenses with close values of permittivity and permeability usually display low reflection losses at the expense of narrow single frequency operation. Here, a broadband low-profile lens is designed by exploiting the dispersion of a fishnet metamaterial together with the zoning technique. The lens operates in a broadband regime from 54 GHz to 58 GHz, representing a fractional bandwidth ~7%, and outperforms Silicon lenses between 54 and 55.5 GHz. This broadband operation is demonstrated by a systematic analysis comprising Huygens-Fresnel analytical method, full-wave numerical simulations and experimental measurements at millimeter waves. For demonstrative purposes, a detailed study of the lens operation at two frequencies is done for the most important lens parameters (focal length, depth of focus, resolution, radiation diagram). Experimental results demonstrate diffraction-limited ~0.5λ transverse resolution, in agreement with analytical and numerical calculations. In a lens antenna configuration, a directivity as high as 16.6 dBi is achieved. The different focal lengths implemented into a single lens could be potentially used for realizing the front end of a non-mechanical zoom millimeter-wave imaging system.

5.
Opt Lett ; 40(2): 245-8, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25679855

ABSTRACT

In the past, it has been demonstrated that it is possible to produce terajets with high resolution at its focus using 3D dielectric cuboids under plane-wave illumination. Here, a systematic study of the harmonic and angular response of terajets using cuboids is performed. Mutifrequency focusing is demonstrated at the fundamental frequency and two higher frequency harmonics showing an intensity enhancement of ∼10, ∼18, and ∼14 for each case. This capability to use 3D dielectric cuboids to produce terajets at the fundamental frequency and first harmonic is experimentally evaluated at sub-THz frequencies, with good agreement with numerical results. Moreover, a robust angular response is demonstrated numerically and experimentally showing that the intensity at the focal position is maintained in a wide angular range (from 0° to 45°), demonstrating the capability to work as a wide scanning terajet-focusing lens. The results here presented may be scaled at different frequency bands such as optical frequencies and may be used in microscopy techniques and sensors.

6.
Opt Lett ; 35(5): 643-5, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20195305

ABSTRACT

We report negative and positive refraction in a prism made of stacked perforated thin surfaces for s and p polarization, respectively. By corrugating the subwavelength slits of a free-standing periodic arrangement, geometrically induced surface-plasmon-like currents are excited and transmission is allowed under s polarization (electric-field vector parallel to the slit). When several of those corrugated slit arrays are subwavelength stacked, the stack behaves as a negative effective index medium (because of double negativity) under s polarization, whereas it behaves as a positive effective index medium under p polarization. The birefringence has been confirmed by the usual wedge experiment in the millimeter-wave range.

7.
Opt Express ; 17(14): 11730-8, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19582087

ABSTRACT

In this paper Anomalous Extraordinary Transmission (ET) is reported for s-polarization of low loss doubly periodic subwavelength hole arrays patterned on polypropylene (PP) substrates by conventional contact photolithography at the so-called THz-gap (1-10 THz). The unexpected enhanced transmittance for s-polarization (i.e. without spoof plasmons) was previously numerically demonstrated in subwavelength slits arrays. However, subsequently no experimental work has been devoted to this unexpected Extraordinary Transmission neither in subwavelength slits nor in subwavelength holes. Here, numerical study and experimental results of the Anomalous ET and the symmetric and antisymmetric transmittance modes associated with the already well-known p-polarization ET are shown alongside a systematically analysis of the frequency peaks as a function of hole size for both incident polarizations.


Subject(s)
Polypropylenes/chemistry , Surface Plasmon Resonance/instrumentation , Terahertz Radiation , Equipment Design , Fourier Analysis , Infrared Rays , Metals/chemistry , Microwaves , Models, Theoretical , Radiation , Refractometry , Scattering, Radiation , Signal Processing, Computer-Assisted , Surface Plasmon Resonance/methods , Surface Properties
8.
Opt Express ; 17(3): 1274-81, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19188955

ABSTRACT

In this letter it is presented a Left-Handed Metamaterial design route based upon stacked arrays of screens made of complementary split rings resonators under normal incidence in the microwave regime. Computation of the dispersion diagram highlights the possibility to obtain backward waves provided the longitudinal lattice is small enough. The experimental results are in good agreement with the computed ones. The physics underlying the Left-Handed behavior is found to rely on electroinductive waves, playing the mutual capacitive coupling the major role to explain the phenomenon. Our route to Left-Handed metamaterial introduced in this paper based on stacking CSRRs screens can be scaled to millimeter and terahertz for future applications.

9.
Opt Express ; 16(22): 18312-9, 2008 Oct 27.
Article in English | MEDLINE | ID: mdl-18958107

ABSTRACT

In this paper it is presented the fabrication of low loss millimeter wave metamaterials based on patterning on polypropylene substrates by conventional contact photolitography. We study numerically and experimentally the transmission and reflection properties of two dimensional arrays of split ring resonators (SRRs), or metasurfaces, and their complementary structure (CSRRs) for co- and cross-polarization excitations up to submillimeter frequencies under normal incidence conditions. The obtained results suggest the possibility of scaling them at terahertz frequencies based on this substrate where other lossy substrates degrade the resonators quality. Left-handed metamaterials derived from these SRRs and CSRRs metasurfaces could be feasible.

10.
Opt Express ; 16(2): 560-6, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18542130

ABSTRACT

Metamaterial structures are artificial materials that show unconventional electromagnetic properties such as negative refraction index, perfect lenses, and invisibility. However, losses are one of the big challenges to be surpassed in order to design practical devices at optical wavelengths. Here we report negative refraction in a prism engineered by stacked sub-wavelength hole arrays. These structures exhibit inherently an extraordinary optical transmission which could offer a solution to the problem of losses at optical wavelengths. It is shown the possibility to obtain negative indices of refraction starting from near to zero values. Our work demonstrates by a direct experiment the feasibility of engineering negative refraction by just drilling sub-wavelength holes in metallic plates and stacking them.


Subject(s)
Metals/chemistry , Models, Theoretical , Refractometry/instrumentation , Refractometry/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis , Feasibility Studies
11.
Opt Express ; 16(13): 9677-83, 2008 Jun 23.
Article in English | MEDLINE | ID: mdl-18575535

ABSTRACT

This work presents the design of a planoconcave parabolic negative index metamaterial lens operating at millimeter wavelengths fabricated by using stacked subwavelength hole arrays. A staircase approximation to the ideal parabola profile has been done by removing step by step one lattice in each dimension of the transversal section. Theory predicts power concentration at the focal point of the parabola when the refractive index equals -1. Both simulation and measurement results exhibit an excellent agreement and an asymmetrical focus has been observed. The possibility to design similar planoconcave devices in the terahertz and optical wavelengths could be a reality in the near future.


Subject(s)
Lenses , Models, Theoretical , Optics and Photonics/instrumentation , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
12.
Phys Rev Lett ; 93(19): 197401, 2004 Nov 05.
Article in English | MEDLINE | ID: mdl-15600876

ABSTRACT

The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.

13.
Opt Lett ; 29(21): 2500-2, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15584274

ABSTRACT

We explore, both experimentally and theoretically, the existence in the millimeter-wave range of the phenomenon of extraordinary light transmission through arrays of subwavelength holes. We have measured the transmission spectra of several samples made on aluminum wafers by use of an AB Millimetre quasi-optical vector network analyzer in the wavelength range 4.2-6.5 mm. Clear signals of the existence of resonant light transmission at wavelengths close to the period of the array appear in the spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...