Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501036

ABSTRACT

A technique for the reconstruction of cylindrical surfaces using optical images with an extension of least squares matching is presented. This technique is based on stereo-image acquisition of a cylindrical object, and it involves displacing the camera following the object length. The basic concept behind this technique is that variations in the camera viewpoint over a cylindrical object produce perspective effects similar to a conic section in an image sequence. Such parallax changes are continuous and can be modelled by a second-order function, which is combined with an adaptive least squares matching (ALSM) for the 3D object reconstruction. Using this concept, a photogrammetric intersection with only two image patches can be used to model a cylindrical object with high accuracy. Experiments were conducted with a cylinder on a panel with coded targets to assess the 3D reconstruction accuracy. The accuracy assessment was based on a comparison between the estimated diameter and the diameter directly measured over the cylinder. The difference between the diameters indicated an accuracy of 1/10 mm, and the cylindrical surface was entirely reconstructed.

2.
Sensors (Basel) ; 17(12)2017 Dec 02.
Article in English | MEDLINE | ID: mdl-29207468

ABSTRACT

This paper presents a practical application of a technique that uses a vertical optical flow with a fisheye camera to generate dense point clouds from a single planimetric station. Accurate data can be extracted to enable the measurement of tree trunks or branches. The images that are collected with this technique can be oriented in photogrammetric software (using fisheye models) and used to generate dense point clouds, provided that some constraints on the camera positions are adopted. A set of images was captured in a forest plot in the experiments. Weighted geometric constraints were imposed in the photogrammetric software to calculate the image orientation, perform dense image matching, and accurately generate a 3D point cloud. The tree trunks in the scenes were reconstructed and mapped in a local reference system. The accuracy assessment was based on differences between measured and estimated trunk diameters at different heights. Trunk sections from an image-based point cloud were also compared to the corresponding sections that were extracted from a dense terrestrial laser scanning (TLS) point cloud. Cylindrical fitting of the trunk sections allowed the assessment of the accuracies of the trunk geometric shapes in both clouds. The average difference between the cylinders that were fitted to the photogrammetric cloud and those to the TLS cloud was less than 1 cm, which indicates the potential of the proposed technique. The point densities that were obtained with vertical optical scanning were 1/3 less than those that were obtained with TLS. However, the point density can be improved by using higher resolution cameras.

SELECTION OF CITATIONS
SEARCH DETAIL
...