Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Exp Biol Med ; 173(5): 673-676, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36210427

ABSTRACT

A common method of modeling urolithiasis is the use of 1 and 0.75% ethylene glycol, or a combination of ethylene glycol with other lithogens, but too rapid progression of the disease and multiple organ toxicity have been reported. We developed a urolithiasis model in Sprague-Dawley rats, in which the animals received a relatively low concentration of ethylene glycol (0.5%), but for a long-term period (6 weeks) followed by animal observation during the 6-week recovery period. In urine samples, signs of the urolithiasis development were observed starting from the sixth week: the presence of ketones, decrease in diuresis and urine pH; in the blood, urea, protein, and hematocrit were elevated. However, no leukocytes were detected in the urine; in the blood, no shifts in differential leukocyte count and no elevation in ALT, creatinine, cholesterol, and triglycerides were observed, which indicates the absence of multiple organ failure while using 1% ethylene glycol. In addition, the animals receiving 0.5% ethylene glycol were followed up to 12 weeks in contrast to animals receiving 1% ethylene glycol (the experiment in this case was stopped during the third week for ethical reasons).


Subject(s)
Ethylene Glycol , Urolithiasis , Animals , Creatinine/metabolism , Ketones/metabolism , Kidney/metabolism , Rats , Rats, Sprague-Dawley , Triglycerides/metabolism , Urea/metabolism , Urolithiasis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...