Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204608

ABSTRACT

Therapeutic strategies for metastatic castration-resistant prostate cancer aim to target androgen receptor signaling. Despite initial survival benefits, treatment resistance invariably occurs, leading to lethal disease. Therapies targeting the androgen receptor can induce the emergence of a neuroendocrine phenotype and reactivate embryonic programs associated with epithelial to mesenchymal transition. We recently reported that dysregulation of the calcium signal can induce the transcription factor Zeb1, a key determinant of cell plasticity during tumor progression. The aim of this study was to determine whether the androgen receptor-targeted treatment Enzalutamide could induce dysregulation of the calcium signal involved in the progression toward epithelial to mesenchymal transition and neuroendocrine differentiation, contributing to therapeutic escape. Our results show that Zeb1 and the SK3 potassium channel are overexpressed in vivo in neuroendocrine castration-resistant prostate cancer and in vitro in LNCaP cells neurodifferentiated after Enzalutamide treatment. Moreover, the neuroendocrine phenotype is associated with a deregulation of the expression of Orai calcium channels. We showed that Zeb1 and SK3 are critical drivers of neuroendocrine differentiation. Interestingly, Ohmline, an SK3 inhibitor, can prevent the expression of Zeb1 and neuroendocrine markers induced by Enzalutamide. This study offers new perspectives to increase hormone therapy efficacy and improve clinical outcomes.

2.
Int J Mol Sci ; 21(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640738

ABSTRACT

Hypoxia is a well-established feature of prostate cancer (PCa) and is associated with disease aggressiveness. The hypoxic microenvironment initiates multiple adaptive responses including epithelial-to-mesenchymal transition (EMT) and a remodeling of calcium homeostasis involved in cancer progression. In the present study, we identified a new hypoxia signaling pathway with a positive feedback loop between the EMT transcription factor Zeb1 and SK3, a Ca2+-activated K+ channel, which leads to amplifying store-operated Ca2+ entry. Zeb1 and SK3 channel were strongly upregulated by hypoxia both in vitro and ex vivo in organotypic cultures of human PCa. Taking into account the sensitivity of the SK3 channel to the membrane lipid composition, we identified lipids such as Ohmline (an alkyl ether lipid and SK3 inhibitor), linoleic acid (LA) and eicosapentaenoic acid (EPA) (fatty acids associated with indolent PCa), which were able to completely abrogate the hypoxia-induced changes in Zeb1 expression. Ultimately, better understanding of this new hypoxia-induced EMT pathway may allow to develop adjuvant therapeutic strategies, in order to control PCa aggressiveness and improve treatment outcomes.


Subject(s)
Epithelial-Mesenchymal Transition , Hypoxia/physiopathology , Prostatic Neoplasms/pathology , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Tumor Microenvironment , Zinc Finger E-box-Binding Homeobox 1/metabolism , Cell Line, Tumor , Cell Movement , Eicosapentaenoic Acid/pharmacology , Glycolipids/pharmacology , Humans , Linoleic Acid/pharmacology , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
3.
Cancers (Basel) ; 12(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252342

ABSTRACT

The mechanisms underlying neuroendocrine (NE) differentiation in prostate cancer (PCa) remain mostly uncharacterized. Since a deregulated calcium homeostasis has been reported in neuroendocrine prostate cancer (NEPC), we explored herein the link between NE differentiation and the calcium-sensing receptor (CaSR). CaSR expression was evaluated by immunohistochemistry-together with NE markers-on tissue microarrays containing samples of normal prostate, localized PCa, metastatic castration resistant PCa (MCRPC) and NEPC. In prostate tissues, we observed a strong association between CaSR and chromogranin expression. Both markers were strongly expressed in all cases of NEPC and co-expression was confirmed by double immunostaining. In MCRPC, the expression of CaSR was significantly associated with shorter overall survival. The involvement of CaSR in NE differentiation was evaluated in PCa cell lines. Inhibition of CaSR led to decrease the expression of neuronal (NSE, ßtubulinIII) and NE (chromogranin, synaptophysin) markers in the NE PCa cell line NCI-H660. A decrease of neuronal and NE markers was also observed in siCaSR-transfected PC3 and 22RV1 cells, respectively, whereas CaSR activation increased both NSE and synaptophysin expression in PC3 cells. These results strongly suggest that CaSR is a marker and a driver of NE differentiation in PCa and emphasize the potential of CaSR directed therapy for NEPC patients.

4.
Cancers (Basel) ; 11(11)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752242

ABSTRACT

The composition of periprostatic adipose tissue (PPAT) has been shown to play a role in prostate cancer (PCa) progression. We recently reported an inverse association between PCa aggressiveness and elevated PPAT linoleic acid (LA) and eicosapentaenoic acid (EPA) content. In the present study, we identified a new signaling pathway with a positive feedback loop between the epithelial-to-mesenchymal transition (EMT) transcription factor Zeb1 and the Ca2+-activated K+ channel SK3, which leads to an amplification of Ca2+ entry and cellular migration. Using in vitro experiments and ex vivo cultures of human PCa slices, we demonstrated that LA and EPA exert anticancer effects, by modulating Ca2+ entry, which was involved in Zeb1 regulation and cancer cellular migration. This functional approach using human prostate tumors highlights the clinical relevance of our observations, and may allow us to consider the possibility of targeting cancer spread by altering the lipid microenvironment.

5.
Am J Pathol ; 189(6): 1268-1275, 2019 06.
Article in English | MEDLINE | ID: mdl-30954471

ABSTRACT

In prostate cancer research, there is a lack of valuable preclinical models. Tumor cell heterogeneity and sensitivity to microenvironment signals, such as hypoxia or extracellular calcium concentration, are difficult to reproduce. Here, we developed and characterized an ex vivo tissue culture model preserving these properties. Prostate tissue slices from 26 patients were maintained ex vivo under optimized culture conditions. The expression of markers associated with proliferation, androgen-receptor signaling, and hypoxia was assessed by immunostaining. A macroscope was used to achieve real-time calcium fluorescence optical imaging. Tissue morphology was maintained successfully without necrosis for 5 days. Compared with native tumors and tissue cultured with androgens, androgen deprivation in the medium led to decreased expression of both androgen receptor and its target gene products, prostate specific antigen (PSA) and ETS-related gene (ERG). Ex vivo cultured slices also were sensitive to hypoxia because carbonic anhydrase IX and zinc finger E-box binding homeobox 1 (Zeb1) protein levels increased in 1% oxygen. Exposure of slices to supraphysiological extracellular Ca2+ concentration induced a robust and rapid Ca2+ entry, with a greater response in tumor compared with nontumor tissue. This ex vivo model reproduces the morphologic and functional characteristics of human prostate cancer, including sensitivity to androgen deprivation and induced response to hypoxia and extracellular Ca2+. It therefore could become an attractive tool for drug response prediction studies.


Subject(s)
Calcium Signaling , Calcium/metabolism , Models, Biological , Prostatic Neoplasms/metabolism , Tumor Microenvironment , Aged , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Cell Hypoxia , Humans , Kallikreins/metabolism , Male , Middle Aged , Neoplasm Proteins/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Tissue Culture Techniques , Transcriptional Regulator ERG/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...