Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
iScience ; 27(5): 109802, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38746666

ABSTRACT

Targeted protein degradation (TPD) strategy harnesses the ubiquitin-proteasome system (UPS) to degrade a protein of interest (POI) by bringing it into proximity with an E3 ubiquitin ligase. However, the limited availability of functional E3 ligases and the emergence of resistance through mutations in UPS components restrict this approach. Therefore, identifying alternative E3 ligases suitable for TPD is important to develop new degraders and overcome potential resistance mechanisms. Here, we use a protein-based degrader method, by fusing an anti-tag intracellular antibody to an E3 ligase, to screen E3 ligases enabling the degradation of a tagged POI. We identify SOCS7 E3 ligase as effective biodegrader, able to deplete its target in various cell lines regardless of the POI's subcellular localization. We show its utility by generating a SOCS7-based KRAS degrader that inhibits mutant KRAS pancreatic cancer cells' proliferation. These findings highlight SOCS7 versatility as valuable E3 ligase for generating potent degraders.

2.
Cell Rep ; 43(5): 114214, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38761375

ABSTRACT

TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Mutation , Neurodegenerative Diseases , Phosphoric Diester Hydrolases , Humans , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Mutation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics , Transcription, Genetic , R-Loop Structures , CRISPR-Cas Systems/genetics
3.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38294491

ABSTRACT

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Subject(s)
Adenocarcinoma , Cytidine Deaminase , Nucleic Acid Synthesis Inhibitors , Pancreatic Neoplasms , Humans , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Cytidine Deaminase/metabolism , DNA , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , DNA Replication , Nucleic Acid Synthesis Inhibitors/therapeutic use
4.
Front Immunol ; 13: 980539, 2022.
Article in English | MEDLINE | ID: mdl-36059552

ABSTRACT

Strategies based on intracellular expression of artificial binding domains present several advantages over manipulating nucleic acid expression or the use of small molecule inhibitors. Intracellularly-functional nanobodies can be considered as promising macrodrugs to study key signaling pathways by interfering with protein-protein interactions. With the aim of studying the RAS-related small GTPase RHOA family, we previously isolated, from a synthetic phage display library, nanobodies selective towards the GTP-bound conformation of RHOA subfamily proteins that lack selectivity between the highly conserved RHOA-like and RAC subfamilies of GTPases. To identify RHOA/ROCK pathway inhibitory intracellular nanobodies, we implemented a stringent, subtractive phage display selection towards RHOA-GTP followed by a phenotypic screen based on F-actin fiber loss. Intracellular interaction and intracellular selectivity between RHOA and RAC1 proteins was demonstrated by adapting the sensitive intracellular protein-protein interaction reporter based on the tripartite split-GFP method. This strategy led us to identify a functional intracellular nanobody, hereafter named RH28, that does not cross-react with the close RAC subfamily and blocks/disrupts the RHOA/ROCK signaling pathway in several cell lines without further engineering or functionalization. We confirmed these results by showing, using SPR assays, the high specificity of the RH28 nanobody towards the GTP-bound conformation of RHOA subfamily GTPases. In the metastatic melanoma cell line WM266-4, RH28 expression triggered an elongated cellular phenotype associated with a loss of cellular contraction properties, demonstrating the efficient intracellular blocking of RHOA/B/C proteins downstream interactions without the need of manipulating endogenous gene expression. This work paves the way for future therapeutic strategies based on protein-protein interaction disruption with intracellular antibodies.


Subject(s)
Single-Domain Antibodies , Actins/metabolism , Guanosine Triphosphate , Signal Transduction , Single-Domain Antibodies/metabolism , rac1 GTP-Binding Protein/metabolism , ras Proteins/metabolism
5.
Antibodies (Basel) ; 11(3)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35892707

ABSTRACT

Pancreatic cancer is an aggressive cancer with a dismal prognosis. This is due to the difficulty to detect the disease at an early and curable stage. In addition, only limited treatment options are available, and they are confronted by mechanisms of resistance. Monoclonal antibody (mAb) molecules are highly specific biologics that can be directly used as a blocking agent or modified to deliver a drug payload depending on the desired outcome. They are widely used to target extracellular proteins, but they can also be employed to inhibit intracellular proteins, such as oncoproteins. While mAbs are a class of therapeutics that have been successfully employed to treat many cancers, they have shown only limited efficacy in pancreatic cancer as a monotherapy so far. In this review, we will discuss the challenges, opportunities and hopes to use mAbs for pancreatic cancer treatment, diagnostics and imagery.

6.
Nat Commun ; 13(1): 2961, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618715

ABSTRACT

RNase H2 is a specialized enzyme that degrades RNA in RNA/DNA hybrids and deficiency of this enzyme causes a severe neuroinflammatory disease, Aicardi Goutières syndrome (AGS). However, the molecular mechanism underlying AGS is still unclear. Here, we show that RNase H2 is associated with a subset of genes, in a transcription-dependent manner where it interacts with RNA Polymerase II. RNase H2 depletion impairs transcription leading to accumulation of R-loops, structures that comprise RNA/DNA hybrids and a displaced DNA strand, mainly associated with short and intronless genes. Importantly, accumulated R-loops are processed by XPG and XPF endonucleases which leads to DNA damage and activation of the immune response, features associated with AGS. Consequently, we uncover a key role for RNase H2 in the transcription of human genes by maintaining R-loop homeostasis. Our results provide insight into the mechanistic contribution of R-loops to AGS pathogenesis.


Subject(s)
R-Loop Structures , Ribonucleases , Autoimmune Diseases of the Nervous System , DNA/chemistry , DNA Breaks , Endoribonucleases/metabolism , Humans , Inflammation/genetics , Nervous System Malformations , R-Loop Structures/genetics , RNA/chemistry , Ribonuclease H/metabolism , Ribonuclease, Pancreatic/metabolism , Ribonucleases/metabolism
7.
Bio Protoc ; 12(4): e4324, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35340285

ABSTRACT

Targeting hard-to-drug proteins, such as proteins functioning by protein-protein interactions (PPIs) with small molecules, is difficult because of the lack of well-defined pockets. Fragment or computational-based methods are usually employed for the discovery of such compounds, but no generic method is available to quickly identify small molecules interfering with PPIs. Here, we provide a protocol describing a generic method to discover small molecules inhibiting the interaction between an intracellular antibody and its target, in particular for proteins that are hard to make in recombinant form. This protocol reports a versatile and generic method that can be applied to any target/intracellular antibody. Because it is a cell-based assay, it identifies chemical matters that are already displaying advantageous cell permeability properties. Graphic abstract: Cell-based intracellular antibody-guided small molecule screening.

8.
Biochem Soc Trans ; 49(5): 2021-2035, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34623375

ABSTRACT

The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.


Subject(s)
Antibodies/metabolism , Designed Ankyrin Repeat Proteins/metabolism , Drug Discovery/methods , Monomeric GTP-Binding Proteins/metabolism , Neoplasms/enzymology , Signal Transduction/drug effects , Single-Domain Antibodies/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Designed Ankyrin Repeat Proteins/pharmacology , Humans , Molecular Targeted Therapy/methods , Monomeric GTP-Binding Proteins/antagonists & inhibitors , Monomeric GTP-Binding Proteins/immunology , Neoplasms/drug therapy , Protein Binding , Proteolysis/drug effects , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology
9.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: mdl-33837087

ABSTRACT

Intracellular antibodies are tools that can be used directly for target validation by interfering with properties like protein-protein interactions. An alternative use of intracellular antibodies in drug discovery is developing small-molecule surrogates using antibody-derived (Abd) technology. We previously used this strategy with an in vitro competitive surface plasmon resonance method that relied on high-affinity antibody fragments to obtain RAS-binding compounds. We now describe a novel implementation of the Abd method with a cell-based intracellular antibody-guided screening method that we have applied to the chromosomal translocation protein LMO2. We have identified a chemical series of anti-LMO2 Abd compounds that bind at the same LMO2 location as the inhibitory anti-LMO2 intracellular antibody combining site. Intracellular antibodies could therefore be used in cell-based screens to identify chemical surrogates of their binding sites and potentially be applied to any challenging proteins, such as transcription factors that have been considered undruggable.


Subject(s)
Antibodies , Translocation, Genetic , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Binding Sites, Antibody , Humans , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics
10.
Anal Chem ; 93(15): 6104-6111, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33825439

ABSTRACT

As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 µg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.


Subject(s)
Breast Neoplasms , rhoA GTP-Binding Protein , rhoC GTP-Binding Protein , Cell Transformation, Neoplastic , Female , Guanosine Triphosphate , Humans , rhoA GTP-Binding Protein/metabolism , rhoC GTP-Binding Protein/metabolism
11.
J Immunol Methods ; 494: 113051, 2021 07.
Article in English | MEDLINE | ID: mdl-33794223

ABSTRACT

The use of intracellular antibodies as templates to derive surrogate compounds is an important objective because intracellular antibodies can be employed initially for target validation in pre-clinical assays and subsequently employed in compound library screens. LMO2 is a T cell oncogenic protein activated in the majority of T cell acute leukaemias. We have used an inhibitory intracellular antibody fragment as a competitor in a small molecule library screen using competitive surface plasmon resonance (cSPR) to identify compounds that bind to LMO2. We selected four compounds that bind to LMO2 but not when the anti-LMO2 intracellular antibody fragment is bound to it. These findings further illustrate the value of intracellular antibodies in the initial stages of drug discovery campaigns and more generally antibodies, or antibody fragments, can be the starting point for chemical compound development as surrogates of the antibody combining site.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigens, Neoplasm/metabolism , Immunoglobulin Fragments/metabolism , LIM Domain Proteins/metabolism , Leukemia, T-Cell/metabolism , Proto-Oncogene Proteins/metabolism , T-Lymphocytes/metabolism , Antibodies/metabolism , Binding, Competitive , Cells, Cultured , Drug Discovery , Humans , Immunoglobulin Fragments/genetics , Intracellular Space , Protein Conformation , Small Molecule Libraries , Surface Plasmon Resonance , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , T-Lymphocytes/immunology
12.
STAR Protoc ; 2(1): 100249, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33437969

ABSTRACT

Here, we provide a protocol for the selection of conformation-specific intracellular antibody degraders using a cell-based screening method. We applied this protocol to select antibody-based degraders targeting the active form of the small GTPase RHOB (i.e., RHOB-GTP) using an engineered H2882 cell line. The protocol can be used to study the function of RHOB active conformation in various cellular settings. This protocol can be broadly applied to select any kind of intracellular antibody degraders, regardless of conformational state. For complete details on the use and execution of this protocol, please refer to Bery et al. (2019).


Subject(s)
Cell Engineering , Proteolysis , Single-Chain Antibodies/metabolism , rhoB GTP-Binding Protein/metabolism , Cell Line , Humans , Protein Conformation , Single-Chain Antibodies/genetics , rhoB GTP-Binding Protein/genetics
13.
Nat Commun ; 11(1): 3233, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591521

ABSTRACT

Tumour-associated KRAS mutations are the most prevalent in the three RAS-family isoforms and involve many different amino-acids. Therefore, molecules able to interfere with mutant KRAS protein are potentially important for wide-ranging tumour therapy. We describe the engineering of two RAS degraders based on protein macromolecules (macrodrugs) fused to specific E3 ligases. A KRAS-specific DARPin fused to the VHL E3 ligase is compared to a pan-RAS intracellular single domain antibody (iDAb) fused to the UBOX domain of the CHIP E3 ligase. We demonstrate that while the KRAS-specific DARPin degrader induces specific proteolysis of both mutant and wild type KRAS, it only inhibits proliferation of cancer cells expressing mutant KRAS in vitro and in vivo. Pan-RAS protein degradation, however, affects proliferation irrespective of the RAS mutation. These data show that specific KRAS degradation is an important therapeutic strategy to affect tumours expressing any of the range of KRAS mutations.


Subject(s)
Macromolecular Substances/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Neoplasms/metabolism , Proteolysis , ras Proteins/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Mice, Nude , Protein Domains , Protein Engineering , Signal Transduction
14.
Cell Chem Biol ; 26(11): 1544-1558.e6, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31522999

ABSTRACT

The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.


Subject(s)
Single-Domain Antibodies/metabolism , rhoB GTP-Binding Protein/metabolism , Binding Sites , Cell Movement/drug effects , Crystallography, X-Ray , Doxycycline/pharmacology , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Expression/drug effects , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , HeLa Cells , Humans , Mutagenesis , Protein Structure, Tertiary , RNA Interference , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , rhoB GTP-Binding Protein/antagonists & inhibitors , rhoB GTP-Binding Protein/genetics
15.
Antibodies (Basel) ; 8(1)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-31544814

ABSTRACT

RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.

16.
Nat Commun ; 10(1): 2607, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197133

ABSTRACT

Inhibiting the RAS oncogenic protein has largely been through targeting the switch regions that interact with signalling effector proteins. Here, we report designed ankyrin repeat proteins (DARPins) macromolecules that specifically inhibit the KRAS isoform by binding to an allosteric site encompassing the region around KRAS-specific residue histidine 95 at the helix α3/loop 7/helix α4 interface. We show that these DARPins specifically inhibit KRAS/effector interactions and the dependent downstream signalling pathways in cancer cells. Binding by the DARPins at that region influences KRAS/effector interactions in different ways, including KRAS nucleotide exchange and inhibiting KRAS dimerization at the plasma membrane. These results highlight the importance of targeting the α3/loop 7/α4 interface, a previously untargeted site in RAS, for specifically inhibiting KRAS function.


Subject(s)
Allosteric Site/drug effects , Antineoplastic Agents/pharmacology , Drug Design , Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Ankyrin Repeat , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Screening Assays, Antitumor , HEK293 Cells , Histidine/metabolism , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Neoplasms/genetics , Neoplasms/pathology , Peptide Library , Protein Binding/drug effects , Protein Binding/genetics , Protein Multimerization/drug effects , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects
17.
Sci Rep ; 9(1): 5760, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962539

ABSTRACT

The surfaceome is critical because surface proteins provide a gateway for internal signals and transfer of molecules into cells, and surfaceome differences can influence therapy response. We have used a surfaceome analysis method, based on comparing RNA-seq data between normal and abnormal cells (Surfaceome DataBase Mining or Surfaceome DBM), to identify sets of upregulated cell surface protein mRNAs in an LMO2-mediated T-ALL mouse model and corroborated by protein detection using antibodies. In this model the leukemia initiating cells (LICs) comprise pre-leukaemic, differentiation inhibited thymocytes allowing us to provide a profile of the LIC surfaceome in which GPR56, CD53 and CD59a are co-expressed with CD25. Implementation of cell surface interaction assays demonstrates fluid interaction of surface proteins and CD25 is only internalized when co-localized with other proteins. The Surfaceome DBM approach to analyse cancer cell surfaceomes is a way to find targetable surface biomarkers for clinical conditions where RNA-seq data from normal and abnormal cell are available.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , LIM Domain Proteins/metabolism , Leukemia, Lymphoid/genetics , Proto-Oncogene Proteins/metabolism , Transcriptome , Adaptor Proteins, Signal Transducing/genetics , Animals , Biomarkers, Tumor/genetics , CD59 Antigens/genetics , CD59 Antigens/metabolism , Cell Membrane/metabolism , Cells, Cultured , HEK293 Cells , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , LIM Domain Proteins/genetics , Leukemia, Lymphoid/metabolism , Leukemia, Lymphoid/pathology , Mice , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/genetics , RNA-Seq , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tetraspanin 25/genetics , Tetraspanin 25/metabolism
18.
Curr Protoc Cell Biol ; 83(1): e83, 2019 06.
Article in English | MEDLINE | ID: mdl-30768855

ABSTRACT

Protein-protein interactions (PPIs) are principle biological processes that control normal cell growth, differentiation, and homeostasis but are also crucial in diseases such as malignancy, neuropathy, and infection. Despite the importance of PPIs in biology, this target class has been very challenging to convert to therapeutics. In the last decade, much progress has been made in the inhibition of PPIs involved in diseases, but many remain difficult such as RAS-effector interactions in cancers. We describe here a protocol for using Bioluminescence Resonance Energy Transfer 2 (BRET2)-based RAS biosensors to detect and characterize RAS PPI inhibition by macromolecules and small molecules. This method could be extended to any other small GTPases or any other PPIs of interest. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Energy Transfer , Luminescent Measurements/methods , ras Proteins/analysis , Biosensing Techniques , HEK293 Cells , Humans , Immunoblotting , Protein Engineering
19.
Proc Natl Acad Sci U S A ; 116(7): 2545-2550, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30683716

ABSTRACT

The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein-protein interactions. We have refined crystallization conditions for KRAS169Q61H-yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein-protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein-protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein-protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Oncogene Protein p21(ras)/antagonists & inhibitors , Crystallography, X-Ray , Drug Development , Molecular Structure , Oncogene Protein p21(ras)/metabolism , Protein Binding , Surface Plasmon Resonance
20.
Nat Commun ; 9(1): 3169, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093669

ABSTRACT

Targeting specific protein-protein interactions (PPIs) is an attractive concept for drug development, but hard to implement since intracellular antibodies do not penetrate cells and most small-molecule drugs are considered unsuitable for PPI inhibition. A potential solution to these problems is to select intracellular antibody fragments to block PPIs, use these antibody fragments for target validation in disease models and finally derive small molecules overlapping the antibody-binding site. Here, we explore this strategy using an anti-mutant RAS antibody fragment as a competitor in a small-molecule library screen for identifying RAS-binding compounds. The initial hits are optimized by structure-based design, resulting in potent RAS-binding compounds that interact with RAS inside the cells, prevent RAS-effector interactions and inhibit endogenous RAS-dependent signalling. Our results may aid RAS-dependent cancer drug development and demonstrate a general concept for developing small compounds to replace intracellular antibody fragments, enabling rational drug development to target validated PPIs.


Subject(s)
Binding Sites, Antibody , Immunoglobulin Fragments/chemistry , Signal Transduction , Antibodies/chemistry , Biomarkers/metabolism , Cell Line, Tumor , Cell Survival , Crystallography, X-Ray , HEK293 Cells , Humans , Mutation , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , Small Molecule Libraries , Surface Plasmon Resonance , ras Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...