Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 35(6): 109121, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979625

ABSTRACT

The vascular endothelial growth factor (VEGF) pathway regulates key processes in synapse function, which are disrupted in early stages of Alzheimer's disease (AD) by toxic-soluble amyloid-beta oligomers (Aßo). Here, we show that VEGF accumulates in and around Aß plaques in postmortem brains of patients with AD and in APP/PS1 mice, an AD mouse model. We uncover specific binding domains involved in direct interaction between Aßo and VEGF and reveal that this interaction jeopardizes VEGFR2 activation in neurons. Notably, we demonstrate that VEGF gain of function rescues basal synaptic transmission, long-term potentiation (LTP), and dendritic spine alterations, and blocks long-term depression (LTD) facilitation triggered by Aßo. We further decipher underlying mechanisms and find that VEGF inhibits the caspase-3-calcineurin pathway responsible for postsynaptic glutamate receptor loss due to Aßo. These findings provide evidence for alterations of the VEGF pathway in AD models and suggest that restoring VEGF action on neurons may rescue synaptic dysfunction in AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Synapses/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Mice
2.
Cell Mol Life Sci ; 75(1): 67-79, 2018 01.
Article in English | MEDLINE | ID: mdl-28864883

ABSTRACT

Transcriptional regulation of proteins involved in neuronal polarity is a key process that underlies the ability of neurons to transfer information in the central nervous system. The Collapsin Response Mediator Protein (CRMP) family is best known for its role in neurite outgrowth regulation conducting to neuronal polarity and axonal guidance, including CRMP5 that drives dendrite differentiation. Although CRMP5 is able to control dendritic development, the regulation of its expression remains poorly understood. Here we identify a Sox5 consensus binding sequence in the putative promoter sequence upstream of the CRMP5 gene. By luciferase assays we show that Sox5 increases CRMP5 promoter activity, but not if the putative Sox5 binding site is mutated. We demonstrate that Sox5 can physically bind to the CRMP5 promoter DNA in gel mobility shift and chromatin immunoprecipitation assays. Using a combination of real-time RT-PCR and quantitative immunocytochemistry, we provide further evidence for a Sox5-dependent upregulation of CRMP5 transcription and protein expression in N1E115 cells: a commonly used cell line model for neuronal differentiation. Furthermore, we report that increasing Sox5 levels in this neuronal cell line inhibits neurite outgrowth. This inhibition requires CRMP5 because CRMP5 knockdown prevents the Sox5-dependent effect. We confirm the physiological relevance of the Sox5-CRMP5 pathway in the regulation of neurite outgrowth using mouse primary hippocampal neurons. These findings identify Sox5 as a critical modulator of neurite outgrowth through the selective activation of CRMP5 expression.


Subject(s)
Amidohydrolases/genetics , Gene Expression Regulation , Neuronal Outgrowth/genetics , SOXD Transcription Factors/genetics , Amidohydrolases/metabolism , Animals , Binding Sites/genetics , Brain/embryology , Brain/metabolism , Cell Line, Tumor , Humans , Hydrolases , Mice , Microtubule-Associated Proteins , Mutation , Neurites/metabolism , Neurons/cytology , Neurons/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , SOXD Transcription Factors/metabolism
3.
Cancer Res ; 75(17): 3519-28, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26122847

ABSTRACT

Collapsin response mediator protein 5 (CRMP5) belongs to a family of five cytosolic proteins that play a major role in nervous system development. This protein was first described in cancer-induced autoimmune processes, causing neurodegenerative disorders (paraneoplastic neurologic syndromes). CRMP5 expression has been reported to serve as a biomarker for high-grade lung neuroendocrine carcinomas; however, its functional roles have not been examined in any setting of cancer pathophysiology. In this study, we report two different CRMP5 expression patterns observed in human glioblastoma (GBM) biopsies that establish connections between CRMP5 expression, Notch receptor signaling, and GBM cell proliferation. We demonstrated that elevated CRMP5 promotes Notch receptor expression and Akt activation in human tumor cell lines, GBM stem cells, and primary tumor biopsies. We have shown that the high CRMP5 and Notch expression in GBM xenograft is related to stem cells. This suggests that high CRMP5 expression pattern in GBM biopsies encompasses a subset of stem cells. Mechanistically, CRMP5 functioned by hijacking Notch receptors from Itch-dependent lysosomal degradation. Our findings suggest that CRMP5 serves as a major mediator of Notch signaling and Akt activation by controlling the degradation of the Notch receptor, with implications for defining a biomarker signature in GBM that correlates with and may predict patient survival.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , Nerve Tissue Proteins/biosynthesis , Receptors, Notch/genetics , Adult , Aged , Aged, 80 and over , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Hydrolases , Male , Mice , Microtubule-Associated Proteins , Middle Aged , Nerve Tissue Proteins/genetics , Receptors, Notch/metabolism , Signal Transduction , Survival Analysis , Xenograft Model Antitumor Assays
4.
Stem Cell Reports ; 4(2): 239-54, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25601208

ABSTRACT

Understanding the mechanisms of cancer initiation will help to prevent and manage the disease. At present, the role of the breast microenvironment in transformation remains unknown. As BMP2 and BMP4 are important regulators of stem cells and their niches in many tissues, we investigated their function in early phases of breast cancer. BMP2 production by tumor microenvironment appeared to be specifically upregulated in luminal tumors. Chronic exposure of immature human mammary epithelial cells to high BMP2 levels initiated transformation toward a luminal tumor-like phenotype, mediated by the receptor BMPR1B. Under physiological conditions, BMP2 controlled the maintenance and differentiation of early luminal progenitors, while BMP4 acted on stem cells/myoepithelial progenitors. Our data also suggest that microenvironment-induced overexpression of BMP2 may result from carcinogenic exposure. We reveal a role for BMP2 and the breast microenvironment in the initiation of stem cell transformation, thus providing insight into the etiology of luminal breast cancer.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein Receptors, Type I/genetics , Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Gene Amplification , Neoplastic Stem Cells/metabolism , Stem Cell Niche/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinogens/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Signal Transduction , Tumor Microenvironment/genetics
5.
Eur J Neurosci ; 40(7): 3010-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25040932

ABSTRACT

The collapsin response-mediator proteins (CRMPs) are multifunctional proteins highly expressed during brain development but down-regulated in the adult brain. They are involved in axon guidance and neurite outgrowth signalling. Among these, the intensively studied CRMP2 has been identified as an important actor in axon outgrowth, this activity being correlated with the reorganisation of cytoskeletal proteins via the phosphorylation state of CRMP2. Another member, CRMP5, restricts the growth-promotional effects of CRMP2 by inhibiting dendrite outgrowth at early developmental stages. This inhibition occurs when CRMP5 binds to tubulin and the microtubule-associated protein MAP2, but the role of CRMP5 phosphorylation is still unknown. Here, we have studied the role of CRMP5 phosphorylation by mutational analysis. Using non-phosphorylatable truncated constructs of CRMP5 we have demonstrated that, among the four previously identified CRMP5 phosphorylation sites (T509, T514, T516 and S534), only the phosphorylation at T516 residue was needed for neurite outgrowth inhibition in PC12 cells and in cultured C57BL/6J mouse hippocampal neurons. Indeed, the expression of the CRMP5 non-phosphorylated form induced a loss of function of CRMP5 and the mutant mimicking the phosphorylated form induced the growth inhibition function seen in wildtype CRMP5. The T516 phosphorylation was achieved by the glycogen synthase kinase-3ß (GSK-3ß), which can phosphorylate the wildtype protein but not the non-phosphorylatable mutant. Furthermore, we have shown that T516 phosphorylation is essential for the tubulin-binding property of CRMP5. Therefore, CRMP5-induced growth inhibition is dependent on T516 phosphorylation through the GSK-3ß pathway. The findings provide new insights into the mechanisms underlying neurite outgrowth.


Subject(s)
Dendrites/metabolism , Nerve Tissue Proteins/metabolism , Neurites/metabolism , Neurons/metabolism , Animals , Cells, Cultured , Dendrites/physiology , Hippocampus/cytology , Hydrolases , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins , Neurites/physiology , Neurons/physiology , PC12 Cells , Phosphorylation , Rats , Threonine/chemistry , Tubulin/metabolism
6.
Stem Cells ; 29(3): 389-96, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21425402

ABSTRACT

CD10 is a remarkable member of the major class of widely expressed cell surface proteins, endopeptidases. First identified in leukemia as a tumor-specific antigen (common acute lymphoblastic leukemia antigen), CD10 has become largely used in cancer diagnosis. However, its function in oncogenesis remains unclear. We previously identified CD10 as a tool to access sphere-forming cells and showed its involvement in mammary stem cell (SC) regulation. We further illustrated that its enzymatic activity is involved, through signaling peptides, in SC maintenance. Therefore, CD10 is not only a cell surface marker in normal and malignant contexts but also affects the extracellular environment and plays a key role in regulation of a number of biological functions and likely in SC. In tumors, the "niche" favors the survival of sheltered cancer SC whose eradication has become the new challenge in oncology. This highlights the importance of understanding the role of CD10 in cancer SC. We will review the characteristics, main functions, and mechanism of action of CD10. Finally, we will review its clinical use and involvement in cancer.


Subject(s)
Neoplasms/etiology , Neprilysin/physiology , Stem Cells/physiology , Animals , Humans , Immune System/metabolism , Immune System/physiology , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mammary Glands, Human/physiology , Neoplasms/metabolism , Neoplasms/pathology , Neprilysin/genetics , Neprilysin/metabolism , Nervous System/metabolism , Nervous System/pathology , Nervous System Physiological Phenomena/genetics , Stem Cells/metabolism , Stem Cells/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology
7.
BMC Cancer ; 9: 445, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20017904

ABSTRACT

BACKGROUND: The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN) and one exon 1b-spliced (MYCNDelta1b) mRNA. But nothing is known about their respective ability to translate the MYCN protein. METHODS: Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCNDelta1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein. RESULTS: Both are translated, but higher levels of protein were seen with MYCNDelta1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCNDelta1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCNDelta1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCNDelta1b mRNA. CONCLUSIONS: Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction.


Subject(s)
Alternative Splicing/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Open Reading Frames/genetics , Protein Biosynthesis , Adult , Base Sequence , Cell Survival/genetics , Cells, Cultured , Exons/genetics , Fetus/metabolism , Gene Dosage/physiology , Gene Expression/physiology , Humans , N-Myc Proto-Oncogene Protein , Open Reading Frames/physiology , Protein Isoforms/genetics , RNA Splice Sites/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Curr Med Chem ; 16(4): 394-416, 2009.
Article in English | MEDLINE | ID: mdl-19199913

ABSTRACT

Stem cells are defined by their unique property to self-renew and starting from one single cell to generate all the different progenies required for tissue regeneration. In adults, stem cells are still present in the majority of tissues and organs where they are responsible for continuous organs and tissues homeostasis. Adult stem cells have been isolated in various tissues and all share common specific characteristics (localization in stem cell niches, drug transporter expression, adhesion, levels of apoptosis inhibitors, DNA methylation, -) involved in high levels of drug resistance of this specific cell subtype. Several studies have identified different populations of cancer cells, within the same tumor, some of them which present properties closely related to normal stem cells and raised the concept of cancer stem cells. Interestingly, the cell surface markers expressed by these particular cancer cells are the same as those expressed by normal stem cells, suggesting that cancer can arise in some cases from the malignant transformation of stem cells. The cancer stem cell (CaSC) model predicts that, even if "conventional" cancer cells can be killed by chemotherapy or radiotherapy, only the destruction of CaSC, considered responsible for relapse, will allow full recovery, thus demonstrating the importance of CaSC-targeting for patient outcome. Therapeutic innovations will emerge from a better understanding of the biology and environment of cancer stem cells. The tumor environment can create a niche favoring the survival and proliferation of CaSC. It also protects CaSC from chemotherapy-induced apoptosis. Clinically, it is crucial to get rid of quiescent and resistant cells and to adapt the therapeutic strategy to cancer stem cells sheltered in niches. Here, we review the major characteristics of cancer stem cells and their behavior in response to chemotherapy; we also highlight the main issues to be considered for efficient and specific cancer stem cell targeting.


Subject(s)
Drug Delivery Systems/methods , Neoplastic Stem Cells/physiology , Animals , Cell Transformation, Neoplastic/pathology , Humans , Neoplasms/drug therapy , Neoplasms/pathology
9.
Mol Cell Endocrinol ; 199(1-2): 189-93, 2003 Jan 31.
Article in English | MEDLINE | ID: mdl-12581890

ABSTRACT

The human corticotropin-releasing factor receptor type 1 (hCRF-R1) functional transcript is mainly expressed in the anterior pituitary corticotrophs, a tissue usually not available for clinical investigation. Splice variants translated into defective isoforms of the receptor have been described in few peripheral tissues. The aim of this work was to determine whether peripheral white blood cells from healthy individuals, an accessible tissue for clinical investigation, were suitable for the analysis of the hCRF-R1 transcript and gene. We report that: (i) specific amplification of the hCRF-R1 transcript from peripheral white blood cells mRNAs is feasible; (ii) this transcript is similar to the functional transcript; (iii) the draft sequence of chromosome 17 and unrelated sequences allow direct sequencing of all 14 exons of the gene, adjacent splice sites and related branch points. In conclusion, these approaches would be suitable for studies in patients having isolated secondary glucocorticoids deficiency to implicate the hCRH-R1 in the etiology of the disease.


Subject(s)
DNA/isolation & purification , Leukocytes , RNA, Messenger/isolation & purification , Receptors, Corticotropin-Releasing Hormone/genetics , DNA Primers , Humans , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...