Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(8): e1011532, 2023 08.
Article in English | MEDLINE | ID: mdl-37531329

ABSTRACT

The COVID-19 pandemic represents a global challenge that has impacted and is expected to continue to impact the lives and health of people across the world for the foreseeable future. The rollout of vaccines has provided highly anticipated relief, but effective therapeutics are required to further reduce the risk and severity of infections. Monoclonal antibodies have been shown to be effective as therapeutics for SARS-CoV-2, but as new variants of concern (VoC) continue to emerge, their utility and use have waned due to limited or no efficacy against these variants. Furthermore, cumbersome systemic administration limits easy and broad access to such drugs. As well, concentrations of systemically administered antibodies in the mucosal epithelium, a primary site of initial infection, are dependent on neonatal Fc receptor mediated transport and require high drug concentrations. To reduce the viral load more effectively in the lung, we developed an inhalable formulation of a SARS-CoV-2 neutralizing antibody binding to a conserved epitope on the Spike protein, ensuring pan-neutralizing properties. Administration of this antibody via a vibrating mesh nebulization device retained antibody integrity and resulted in effective distribution of the antibody in the upper and lower respiratory tract of non-human primates (NHP). In comparison with intravenous administration, significantly higher antibody concentrations can be obtained in the lung, resulting in highly effective reduction in viral load post SARS-CoV-2 challenge. This approach may reduce the barriers of access and uptake of antibody therapeutics in real-world clinical settings and provide a more effective blueprint for targeting existing and potentially emerging respiratory tract viruses.


Subject(s)
Antiviral Agents , COVID-19 , Animals , Humans , SARS-CoV-2 , Pandemics , Antibodies, Viral , Antibodies, Neutralizing , Epitopes , Spike Glycoprotein, Coronavirus
2.
Curr Opin Struct Biol ; 81: 102624, 2023 08.
Article in English | MEDLINE | ID: mdl-37331203

ABSTRACT

One of the most important fundamental questions connecting chemistry to biology is how chemistry scales in complexity up to biological systems where there are innumerable possible pathways and competing processes. With the development of ultrabright electron and x-ray sources, it has been possible to literally light up atomic motions to directly observe the reduction in dimensionality in the barrier crossing region to a few key reaction modes. How do these chemical processes further couple to the surrounding protein or macromolecular assembly to drive biological functions? Optical methods to trigger photoactive biological processes are needed to probe this issue on the relevant timescales. However, the excitation conditions have been in the highly nonlinear regime, which questions the biological relevance of the observed structural dynamics.


Subject(s)
Proteins , X-Ray Diffraction , Proteins/chemistry , Chemical Phenomena , Motion , X-Rays
3.
Sci Rep ; 12(1): 13955, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977989

ABSTRACT

Within the microbial rhodopsin family, heliorhodopsins (HeRs) form a phylogenetically distinct group of light-harvesting retinal proteins with largely unknown functions. We have determined the 1.97 Å resolution X-ray crystal structure of Thermoplasmatales archaeon SG8-52-1 heliorhodopsin (TaHeR) in the presence of NaCl under acidic conditions (pH 4.5), which complements the known 2.4 Å TaHeR structure acquired at pH 8.0. The low pH structure revealed that the hydrophilic Schiff base cavity (SBC) accommodates a chloride anion to stabilize the protonated retinal Schiff base when its primary counterion (Glu-108) is neutralized. Comparison of the two structures at different pH revealed conformational changes connecting the SBC and the extracellular loop linking helices A-B. We corroborated this intramolecular signaling transduction pathway with computational studies, which revealed allosteric network changes propagating from the perturbed SBC to the intracellular and extracellular space, suggesting TaHeR may function as a sensory rhodopsin. This intramolecular signaling mechanism may be conserved among HeRs, as similar changes were observed for HeR 48C12 between its pH 8.8 and pH 4.3 structures. We additionally performed DEER experiments, which suggests that TaHeR forms possible dimer-of-dimer associations which may be integral to its putative functionality as a light sensor in binding a transducer protein.


Subject(s)
Chlorides , Schiff Bases , Binding Sites , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Rhodopsin/chemistry , Rhodopsins, Microbial/chemistry , Schiff Bases/chemistry , Signal Transduction
4.
Hum Genet ; 141(3-4): 965-979, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34633540

ABSTRACT

Otosclerosis is a bone disorder of the otic capsule and common form of late-onset hearing impairment. Considered a complex disease, little is known about its pathogenesis. Over the past 20 years, ten autosomal dominant loci (OTSC1-10) have been mapped but no genes identified. Herein, we map a new OTSC locus to a 9.96 Mb region within the FOX gene cluster on 16q24.1 and identify a 15 bp coding deletion in Forkhead Box L1 co-segregating with otosclerosis in a Caucasian family. Pre-operative phenotype ranges from moderate to severe hearing loss to profound sensorineural loss requiring a cochlear implant. Mutant FOXL1 is both transcribed and translated and correctly locates to the cell nucleus. However, the deletion of 5 residues in the C-terminus of mutant FOXL1 causes a complete loss of transcriptional activity due to loss of secondary (alpha helix) structure. FOXL1 (rs764026385) was identified in a second unrelated case on a shared background. We conclude that FOXL1 (rs764026385) is pathogenic and causes autosomal dominant otosclerosis and propose a key inhibitory role for wildtype Foxl1 in bone remodelling in the otic capsule. New insights into the molecular pathology of otosclerosis from this study provide molecular targets for non-invasive therapeutic interventions.


Subject(s)
Otosclerosis , Forkhead Transcription Factors/genetics , Humans , Otosclerosis/genetics
5.
J Biol Chem ; 295(44): 14793-14804, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32703899

ABSTRACT

Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.


Subject(s)
Cyanobacteria/chemistry , Mutation , Proton Pumps/chemistry , Rhodopsins, Microbial/chemistry , Binding Sites , Biopolymers/chemistry , Crystallography, X-Ray , Ion Transport , Protein Conformation , Proton Pumps/genetics , Protons , Retinaldehyde/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism
7.
IUCrJ ; 6(Pt 2): 305-316, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30867928

ABSTRACT

A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10°â€…s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.

SELECTION OF CITATIONS
SEARCH DETAIL
...