Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37653915

ABSTRACT

Pathogen-related proteins (PRs) are diversified proteins with a low molecular weight implicated in plant response to biotic and abiotic stress as well in regulating different functions in plant maturation. Interestingly, no systematical study has been conducted in durum wheat (Triticum turgidum subsp. durum). In the present study, 12 PR-1 genes encoding a CAP superfamily domain were identified in the genome of Triticum turgidum subsp. durum, which is an important cereal, using in silico approaches. Additionally, phylogenetic analysis showed that the PR-1 genes were classified into three groups based on their isoelectric point and the conserved motif domain. Moreover, our analysis showed that most of the TdPR-1 proteins presented an N-terminal signal peptide. Expression patterns analysis showed that the PR-1 gene family presented temporal and spatial specificity and was induced by different abiotic stresses. This is the first report describing the genome-scale analysis of the durum wheat PR-1 gene family, and these data will help further study the roles of PR-1 genes during stress responses, leading to crop improvement.

2.
Plants (Basel) ; 12(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514334

ABSTRACT

Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. In fact, the CAT enzyme modulates the hydrogen peroxide (H2O2) contents in cells by translating this toxic compound into water (H2O) and O2- to reduce reactive oxygen species (ROS) contents in cells. ROS are produced as a result of biotic and abiotic environmental stressors. To avoid ROS toxicity, plants are armed with different enzymatic and non-enzymatic systems to decompose ROS. Among the enzymatic system, CAT proteins are well studied. CAT not only controls growth and development in plants but is also involved in plant defense against different stresses. So far, the CAT gene family has not been reported in durum wheat (Triticum turgidum ssp. durum L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the durum wheat genome. Here, six TdCAT genes were identified. Based on phylogenetics, the TdCAT genes belong to three groups (Groups I-III) which is explainable by their comparable structural characteristics. Using bio-informatic analysis, we found that the secondary and tertiary structures were conserved among plants and present similar structures among durum wheat CATs. Two conserved domains (pfam00199 and pfam06628) are also present in all identified proteins, which have different subcellular localizations: peroxisome and mitochondrion. By analyzing their promoters, different cis-elements were identified, such as hormone-correlated response and stress-related responsive elements. Finally, we studied the expression pattern of two catalase genes belonging to two different sub-classes under different abiotic stresses. Expression profiling revealed that TdCAT2 and TdCAT3 presented a constitutive expression pattern. Moreover, both genes are induced in response to salt, mannitol, cold, heat and ABA. Thus, we speculate that those genes are activated by different stresses, such as oxygen deficiency, light, cold, abscisic acid and methyl jasmonate. Further, this study will help in understanding the behavior of CAT genes during environmental stress in durum wheat and in Triticeae species in general.

3.
Antioxidants (Basel) ; 11(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36358580

ABSTRACT

Catalase is a crucial enzyme in antioxidant defense systems protecting eukaryotes from oxidative stress. These proteins are present in almost all living organisms and play important roles in controlling plant responses to biotic and abiotic stresses by catalyzing the decomposition of H2O2. Despite their importance, little is known about their expression in the majority of monocotyledonous species. Here, we isolated and characterized two novel catalase genes from Triticum turgidum and Hordeum vulgare, designated as TtCAT1 and HvCAT1, respectively. Phylogenetic analysis revealed that TtCAT1 and HvCAT1 presented 492 aa and shared an important identity with other catalase proteins belonging to subfamily 1. Using bioinformatic analysis, we predicted the 3D structure models of TtCAT1 and HvCAT1. Interestingly, analysis showed that the novel catalases harbor a peroxisomal targeting signal (PTS1) located at their C-terminus portion, as shown for other catalase proteins. In addition, this motif is responsible for the in silico peroxisomal localization of both proteins. Finally, RT-qPCR analysis showed that TtCAT1 and HvCAT1 are highly expressed in leaves in normal conditions but faintly in roots. Moreover, both genes are upregulated after the application of different stresses such as salt, osmotic, cold, heavy metal, and hormonal stresses. The positive responses of TtCAT1 and HvCAT1 to the various stimuli suggested that these proteins can help to protect both species against environmental stresses.

4.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36139894

ABSTRACT

Catalase is a crucial enzyme in the antioxidant defense system protecting organisms from oxidative stress. Proteins of this kind play important roles in controlling plant response to biotic and abiotic stresses by catalyzing the decomposition of H2O2. The durum wheat catalase 1, TdCAT1, has been previously isolated and characterized. Here, using bio-informatic analysis, we showed that durum wheat catalase 1 TdCAT1 harbors different novel conserved domains. In addition, TdCAT1 contains various phosphorylation residues and S-Nitrosylation residues located at different positions along the protein sequence. TdCAT1 activity decreased after treatment with λ-phosphatase. On the other hand, we showed that durum wheat catalase 1 (TdCAT1) exhibits a low CAT activity in vitro, whereas a deleted form of TdCAT1 has better activity compared to the full-length protein (TdCAT460), suggesting that TdCAT1 could present a putative autoinhibitory domain in its C-terminal portion. Moreover, we showed that TdCAT1 positively regulates E. coli cells in response to salt, ionic and osmotic stresses as well as heavy metal stress in solid and liquid mediums. Such effects had not been reported and lead us to suggest that the durum wheat catalase 1 TdCAT1 protein could play a positive role in response to a wide array of abiotic stress conditions.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-686636

ABSTRACT

Objective: To examine the potential antimicrobial activity of Euphorbia paralias L. (Euphorbiaeae) leaves and stems extracts. Methods: The antimicrobial activity was tested against six microbial strains:Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, Salmonella enterica CIP 8039, Staphy-lococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 90028 by two different methods, the disk method and the dilution method. Results: Our results showed the important antimicrobial activity of the chloroform extract of the stems towards the majority of the strains by using both methods. Bacillus subtilis was the most sensitive strain (MIC=MBC=15μg/mL). Conclusion: Thus, some extracts of Euphorbia paralias can be used in the treatment of infectious diseases caused by microbes.

6.
J Oleo Sci ; 65(4): 339-45, 2016.
Article in English | MEDLINE | ID: mdl-26972463

ABSTRACT

The chemical composition, cytotoxic and antibacterial activities of the hydrodistilled essential oil of the aerial parts of Ononis angustissima from south Tunisia has been evaluated. The oil yield was 0.04% (w/w). The chemical composition, determined by GC and GC-MS is reported for the first time. Forty-five components, accounting for 93.7% of the total oil have been identified. The oil was characterized by a high proportion of oxygenated sesquiterpenes (33.2%), followed by sesquiterpene hydrocarbons (6.3%) and apocarotenoids (10.3%). The main components of the oil were α-eudesmol (22.4%), 2-tridecanone (9.3%) and acetophenone (7.4%). The essential oil was tested for its possible cytotoxic activity towards the human cervical cell line HeLa using the MTT assay and the antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and the clinical strain Acinetobacter sp. This oil exerted a cytotoxic activity with an IC50 of 0.53 ± 0.02 mg/mL and a significant antibacterial effect against P. aeruginosa and E. faecalis.


Subject(s)
Escherichia coli/drug effects , Fabaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Pseudomonas aeruginosa/drug effects , Carotenoids/analysis , Cells, Cultured , Chromatography, Gas , Drug Resistance, Bacterial , Enterococcus faecalis/drug effects , Gas Chromatography-Mass Spectrometry , Humans , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Sesquiterpenes/analysis , Staphylococcus aureus/drug effects , Tunisia
7.
Chem Biodivers ; 9(4): 829-39, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22492499

ABSTRACT

The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk. were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC-FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α-thujone (34.39%), camphor (17.48%), and ß-thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α-thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α-thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram-positive and Gram-negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Dipsacaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Infective Agents/isolation & purification , Bacteria/drug effects , Bacterial Infections/drug therapy , Flowers/chemistry , Fruit/chemistry , Fungi/drug effects , Gas Chromatography-Mass Spectrometry , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Oils, Volatile/isolation & purification , Plant Leaves/chemistry , Plant Stems/chemistry , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...