Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Free Radic Biol Med ; 84: 322-330, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25862412

ABSTRACT

Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound iron (NTBI) and transferrin (Tf) iron at the plasma membrane and endosomes, respectively, by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion protein (PrP(C)), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrP(C) in PrP-knock-out (PrP(-/-)) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intraperitoneal routes. Likewise, preferential radiolabeling of circulating NTBI with (59)Fe revealed significantly reduced uptake and storage of NTBI by the liver of PrP(-/-) mice relative to matched PrP(+/+) controls. However, uptake, storage, and utilization of ferritin-bound iron that does not require reduction for uptake were increased in PrP(-/-) mice, indicating a compensatory response to the iron deficiency. Expression of exogenous PrP(C) in HepG2 cells increased uptake and storage of ferric iron (Fe(3+)), not ferrous iron (Fe(2+)), from the medium, supporting the function of PrP(C) as a plasma membrane FR. Coexpression of PrP(C) with ZIP14 and DMT1 in HepG2 cells increased uptake of Fe(3+) significantly, and surprisingly, increased the ratio of N-terminally truncated PrP(C) forms lacking the FR domain relative to full-length PrP(C). Together, these observations indicate that PrP(C) promotes, and possibly regulates, the uptake of NTBI through DMT1 and Zip14 via its FR activity. Implications of these observations for neuronal iron homeostasis under physiological and pathological conditions are discussed.


Subject(s)
Cation Transport Proteins/metabolism , FMN Reductase/metabolism , PrPC Proteins/physiology , Animals , Biological Transport , Hep G2 Cells , Humans , Iron/metabolism , Liver/metabolism , Mice, Knockout
2.
J Biol Chem ; 290(9): 5512-22, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25572394

ABSTRACT

Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking. Kidney provides a relevant model for this evaluation because PrP(C) is expressed in the kidney, and ∼370 µg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrP(C) promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of (59)Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP(-/-)) mouse kidney relative to PrP(+/+) controls. Selective in vivo radiolabeling of plasma NTBI with (59)Fe revealed similar results. Expression of exogenous PrP(C) in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of (59)Fe-NTBI and to a smaller extent (59)Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrP(Δ51-89)) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrP(C) to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrP(C) promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism.


Subject(s)
FMN Reductase/metabolism , Iron/metabolism , Kidney/metabolism , PrPC Proteins/metabolism , Animals , Blotting, Western , Cell Line, Transformed , Cell Membrane/metabolism , FMN Reductase/genetics , Female , Ion Transport/genetics , Iron/pharmacokinetics , Iron Radioisotopes , Kidney/cytology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , PrPC Proteins/genetics , Transferrin/metabolism , Transferrin/pharmacokinetics
3.
Antioxid Redox Signal ; 21(3): 471-84, 2014 Jul 20.
Article in English | MEDLINE | ID: mdl-24512387

ABSTRACT

SIGNIFICANCE: Intracellular and extracellular aggregation of a specific protein or protein fragments is the principal pathological event in several neurodegenerative conditions. We describe two such conditions: sporadic Creutzfeldt-Jakob disease (sCJD), a rare but potentially infectious and invariably fatal human prion disorder, and Parkinson's disease (PD), a common neurodegenerative condition second only to Alzheimer's disease in prevalence. In sCJD, a cell surface glycoprotein known as the prion protein (PrP(C)) undergoes a conformational change to PrP-scrapie, a pathogenic and infectious isoform that accumulates in the brain parenchyma as insoluble aggregates. In PD, α-synuclein, a cytosolic protein, forms insoluble aggregates that accumulate in neurons of the substantia nigra and cause neurotoxicity. RECENT ADVANCES: Although distinct processes are involved in the pathogenesis of sCJD and PD, both share brain iron dyshomeostasis as a common associated feature that is reflected in the cerebrospinal fluid in a disease-specific manner. CRITICAL ISSUES: Since PrP(C) and α-synuclein play a significant role in maintaining cellular iron homeostasis, it is important to understand whether the aggregation of these proteins and iron dyshomeostasis are causally related. Here, we discuss recent information on the normal function of PrP(C) and α-synuclein in cellular iron metabolism and the cellular and biochemical processes that contribute to iron imbalance in sCJD and PD. FUTURE DIRECTIONS: Improved understanding of the relationship between brain iron imbalance and protein aggregation is likely to help in the development of therapeutic strategies that can restore brain iron homeostasis and mitigate neurotoxicity.


Subject(s)
Iron/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Proteostasis Deficiencies/metabolism , Humans , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Parkinson Disease/pathology , Prion Diseases/metabolism , Prion Diseases/pathology , Prions/metabolism , Protein Folding , Proteostasis Deficiencies/pathology
4.
Antioxid Redox Signal ; 20(8): 1324-63, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-23815406

ABSTRACT

Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.


Subject(s)
Brain/metabolism , Homeostasis , Iron/metabolism , Neurodegenerative Diseases/metabolism , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Brain/pathology , Ferritins/metabolism , Humans , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Mitochondria/metabolism , Neurodegenerative Diseases/drug therapy , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...