Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Neoplasia ; 43: 100926, 2023 09.
Article in English | MEDLINE | ID: mdl-37597490

ABSTRACT

The Sonic Hedgehog (Hh) signal transduction pathway plays a critical role in many developmental processes and, when deregulated, may contribute to several cancers, including basal cell carcinoma, medulloblastoma, colorectal, prostate, and pancreatic cancer. In recent years, several Hh inhibitors have been developed, mainly acting on the Smo receptor. However, drug resistance due to Smo mutations or non-canonical Hh pathway activation highlights the need to identify further mechanisms of Hh pathway modulation. Among these, deacetylation of the Hh transcription factor Gli1 by the histone deacetylase HDAC1 increases Hh activity. On the other end, the KCASH family of oncosuppressors binds HDAC1, leading to its ubiquitination and subsequent proteasomal degradation, leaving Gli1 acetylated and not active. It was recently demonstrated that the potassium channel containing protein KCTD15 is able to interact with KCASH2 protein and stabilize it, enhancing its effect on HDAC1 and Hh pathway. KCTD15 and KCTD1 proteins share a high homology and are clustered in a specific KCTD subfamily. We characterize here KCTD1 role on the Hh pathway. Therefore, we demonstrated KCTD1 interaction with KCASH1 and KCASH2 proteins, and its role in their stabilization by reducing their ubiquitination and proteasome-mediated degradation. Consequently, KCTD1 expression reduces HDAC1 protein levels and Hh/Gli1 activity, inhibiting Hh dependent cell proliferation in Hh tumour cells. Furthermore, analysis of expression data on publicly available databases indicates that KCTD1 expression is reduced in Hh dependent MB samples, compared to normal cerebella, suggesting that KCTD1 may represent a new putative target for therapeutic approaches against Hh-dependent tumour.


Subject(s)
Cerebellar Neoplasms , Hedgehog Proteins , Male , Humans , Hedgehog Proteins/genetics , Zinc Finger Protein GLI1/genetics , Cell Proliferation , Databases, Factual , Co-Repressor Proteins
3.
J Endocrinol Invest ; 46(12): 2583-2599, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37286863

ABSTRACT

PURPOSE/METHODS: The determination of tumour biomarkers is paramount to advancing personalized medicine, more so in rare tumours like medullary thyroid carcinoma (MTC), whose diagnosis is still challenging. The aim of this study was to identify non-invasive circulating biomarkers in MTC. To achieve this goal, paired MTC tissue and plasma extracellular vesicle samples were collected from multiple centres and microRNA (miRNA) expression levels were evaluated. RESULTS: The samples from a discovery cohort of 23 MTC patients were analysed using miRNA arrays. Lasso logistic regression analysis resulted in the identification of a set of circulating miRNAs as diagnostic biomarkers. Among them, miR-26b-5p and miR-451a, were highly expressed and their expression decreased during follow-up in disease-free patients in the discovery cohort. Circulating miR-26b-5p and miR-451a were validated using droplet digital PCR in a second independent cohort of 12 MTC patients. CONCLUSION: This study allowed the identification and validation of a signature of two circulating miRNAs, miR-26b-5p and miR-451a, in two independent cohorts reporting a significant diagnostic performance for MTC. The results of this study offer advancements in molecular diagnosis of MTC proposing a novel non-invasive tool to use in precision medicine.


Subject(s)
Circulating MicroRNA , MicroRNAs , Thyroid Neoplasms , Humans , MicroRNAs/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Biomarkers , Biomarkers, Tumor/metabolism
4.
Theranostics ; 12(6): 2631-2634, 2022.
Article in English | MEDLINE | ID: mdl-35401814

ABSTRACT

Obesity is a metabolic chronic disease whose prevalence is strongly growing in the last years, reaching pandemic proportions. Nowadays weight loss, achieved through lifestyle changes, is the first line therapeutic objective, although great inter-individual variabilities influence response to treatment, suggesting the involvement of epigenetic factors. In this contest, there is increasing recognition of the role of small RNA molecules, particularly microRNAs in the epigenetic regulation of genes involved in adipose tissue and glucose metabolism and several microRNAs have been found to be dysregulated in obesity and metabolic diseases. The development of novel personalized therapeutic strategies using microRNAs bears promise. However, the application of naked microRNAs has been hampered by their low specificity and sensitivity. In a recent issue of Theranostics, Kumar et al. explored the possibility of microRNA delivery through ginger-derived nanoparticles (GDNPs) as an alternative therapeutic approach for obesity treatment. The results reported by Kumar et al., addressing non-coding RNAs and edible plant derived nanoparticles, open new perspectives for the application of this innovative and safe delivery system in the clinical practice for the treatment of obesity and other metabolic disorders.


Subject(s)
Metabolic Diseases , MicroRNAs , Nanoparticles , Epigenesis, Genetic , Humans , Metabolic Diseases/genetics , Metabolic Diseases/therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/metabolism
5.
J Endocrinol Invest ; 44(7): 1363-1377, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33501614

ABSTRACT

Cadmium (Cd), a highly toxic heavy metal, is found in soil, environment and contaminated water and food. Moreover, Cd is used in various industrial activities, such as electroplating, batteries production, fertilizers, while an important non-occupational source is represented by cigarette smoking, as Cd deposits in tobacco leaves. Since many years it is clear a strong correlation between Cd body accumulation and incidence of many diseases. Indeed, acute exposure to Cd can cause inflammation and affect many organs such as kidneys and liver. Furthermore, the attention has focused on its activity as environmental pollutant and endocrine disruptor able to interfere with metabolic and energy balance of living beings. Both in vitro and in vivo experiments have demonstrated that the Cd-exposure is related to metabolic diseases such as obesity, diabetes and osteoporosis even if human studies are still controversial. Recent data show that Cd-exposure is associated with atherosclerosis, hypertension and endothelial damage that are responsible for cardiovascular diseases. Due to the large environmental diffusion of Cd, in this review, we summarize the current knowledge concerning the role of Cd in the incidence of metabolic and cardiovascular diseases.


Subject(s)
Cadmium/adverse effects , Endocrine Disruptors/adverse effects , Metabolic Diseases/physiopathology , Humans , Metabolic Diseases/etiology
6.
Neuropathol Appl Neurobiol ; 44(7): 687-706, 2018 12.
Article in English | MEDLINE | ID: mdl-29478280

ABSTRACT

AIMS: Paediatric low-grade gliomas (pLGGs) are a heterogeneous group of brain tumours associated with a high overall survival: however, they are prone to recur and supratentorial lesions are difficult to resect, being associated with high percentage of disease recurrence. Our aim was to shed light on the biology of pLGGs. METHODS: We performed microRNA profiling on 45 fresh-frozen grade I tumour samples of various histological classes, resected from patients aged ≤16 years. We identified 93 microRNAs specifically dysregulated in tumours as compared to non-neoplastic brain tissue. Pathway analysis of the microRNAs signature revealed PI3K/AKT signalling as one of the centrally enriched oncogenic signalling. To date, activation of the PI3K/AKT pathway in pLGGs has been reported, although activation mechanisms have not been fully investigated yet. RESULTS: One of the most markedly down-regulated microRNAs in our supratentorial pLGGs cohort was miR-139-5p, whose targets include the gene encoding the PI3K's (phosphatidylinositol 3-kinase) catalytic unit, PIK3CA. We investigated the role of miR-139-5p in regulating PI3K/AKT signalling by the use of human cell cultures derived from supratentorial pLGGs. MiR-139-5p overexpression inhibited pLGG cell proliferation and decreased the phosphorylation of PI3K target AKT and phosphorylated-p70 S6 kinase (p-p70 S6K), a hallmark of PI3K/AKT/mTORC1 signalling activation. The effect of miR-139-5p was mediated by PI3K inhibition, as suggested by the decrease in proliferation and phosphorylation of AKT and p70 S6K after treatment with the direct PI3K inhibitor LY294002. CONCLUSIONS: These findings provide the first evidence that down-regulation of miR-139-5p in supratentorial pLGG drives cell proliferation by derepressing PI3K/AKT signalling.


Subject(s)
Cell Proliferation/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Glioma/genetics , MicroRNAs/genetics , Signal Transduction/genetics , Supratentorial Neoplasms/genetics , Adolescent , Child , Child, Preschool , Female , Glioma/metabolism , Glioma/pathology , Humans , Infant , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , MicroRNAs/metabolism , Neoplasm Grading , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Supratentorial Neoplasms/metabolism , Supratentorial Neoplasms/pathology
7.
Oncogene ; 36(32): 4641-4652, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28368412

ABSTRACT

Aberrant Hedgehog/GLI signaling has been implicated in a diverse spectrum of human cancers, but its role in lung adenocarcinoma (LAC) is still under debate. We show that the downstream effector of the Hedgehog pathway, GLI1, is expressed in 76% of LACs, but in roughly half of these tumors, the canonical pathway activator, Smoothened, is expressed at low levels, possibly owing to epigenetic silencing. In LAC cells including the cancer stem cell compartment, we show that GLI1 is activated noncanonically by MAPK/ERK signaling. Different mechanisms can trigger the MAPK/ERK/GLI1 cascade including KRAS mutation and stimulation of NRP2 by VEGF produced by the cancer cells themselves in an autocrine loop or by stromal cells as paracrine cross talk. Suppression of GLI1, by silencing or drug-mediated, inhibits LAC cells proliferation, attenuates their stemness and increases their susceptibility to apoptosis in vitro and in vivo. These findings provide insight into the growth of LACs and point to GLI1 as a downstream effector for oncogenic pathways. Thus, strategies involving direct inhibition of GLI1 may be useful in the treatment of LACs.


Subject(s)
Adenocarcinoma/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Zinc Finger Protein GLI1/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplastic Stem Cells/pathology , Neuropilin-2/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , RNA Interference/physiology , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays , Zinc Finger Protein GLI1/antagonists & inhibitors , Zinc Finger Protein GLI1/genetics
8.
Oncogene ; 35(36): 4741-51, 2016 09 08.
Article in English | MEDLINE | ID: mdl-26876201

ABSTRACT

Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4(+)CD8(+) DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL.


Subject(s)
Disease Progression , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptor, Notch3/biosynthesis , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Mice , Mice, Knockout , Neoplasm Invasiveness/genetics , Neoplasm Staging , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, Notch3/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...