Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Int ; 2023: 6767735, 2023.
Article in English | MEDLINE | ID: mdl-37908315

ABSTRACT

Despite its clinical value, cisplatin (CISP) is complicated by marked hepatotoxicity via inducing oxidative stress, inflammatory, and apoptotic pathways. This study aims to explore the protective impact of azilsartan (AZIL), an antihypertensive drug, in addition to adipose tissue-derived mesenchymal stem cells (AD-MSCs) on CISP-induced hepatotoxicity. After characterization and labeling of AD-MSCs by PKH26 dye, 54 Wistar male albino rats were randomly divided into nine groups: I (CONT), II (AZIL.H), III (CISP), IV (CISP + AZIL.L), V (CISP + AZIL.H), VI (CISP + AD-MSCs), VII (CISP + AZIL.L + AD-MSCs), VIII (CISP + AZIL.H + AD-MSCs), and IX (CISP + VITA C). Serum alanine aminotransferase (ALT), alanine aminotransferase (AST), and albumin levels were determined. Assessment of reactive oxygen species, malondialdehyde, and glutathione contents, and superoxide dismutase activity and histopathological evaluations were done on hepatic tissue. Quantitative real-time PCR was utilized to estimate the expression of TNF-α and IL-6 genes. Cell homing of labeled AD-MSCs to the liver tissues was investigated. Hepatic expression of JNK1/2, ERK1/2, p38, Bax, Bcl-2, and cleaved caspase-3 proteins was investigated by western blot analysis. CISP elevated serum ALT and AST activities, reduced albumin level, and remarkably changed the hepatic architecture. It increased the expression TNF-α and IL-6 genes, raised the expression of JNK1/2, ERK1/2, p38, Bax, and cleaved caspase-3 proteins, and diminished the Bcl-2 protein. By contrast, treatment of animals with either AZIL or AD-MSCs dramatically reduced the effects of CISP injection. Moreover, treatment with combination therapy (AZIL.L or H + AD-MSCs) considerably mitigated all previously mentioned alterations superior to AZIL or AD-MSCs alone, which might be attributed to the AZIL-enhanced homing ability of AD-MSCs into the injured liver tissue. In conclusion, the present findings demonstrated that AZIL improves the hepatoprotective potential of AD-MSCs against CISP-induced hepatotoxicity by modulating oxidative stress, mitogen-activated protein kinase, and apoptotic pathways.

2.
Biomed Pharmacother ; 158: 114097, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36502757

ABSTRACT

The nephrotoxicity of cisplatin (CIS) is a significant complication that challenges its clinical applicability. The epithelial to mesenchymal transition (EMT) may be included in the pathogenesis of CIS-evoked nephrotoxicity. Therefore, the current study aimed to evaluate, for the first time, the possible protective effect of AZL and/or AT-MSCs against CIS-induced EMT in rats on molecular bases. Fifty-four healthy Wistar male albino rats were used in this study. Different biochemical markers of kidney function as well as oxidative stress parameters were investigated. Additionally, renal histopathological study was performed. The expression of EMT-related proteins and genes was evaluated by western blotting and qRT-PCR. CIS markedly increased SCr, BUN, uric acid and renal MDA levels, with concomitant decrease in serum total protein, renal GSH level and SOD activity. Furthermore, it suppressed the expression of Cdh1 gene, increased the α-SMA, Acta2, Cdh2 and Vim genes expression, down regulated the expression of E-cad protein and up-regulated the α-SMA, TGF-ß1, p-Smad2/3 and Snail proteins expression. Kidney tissues showed severe histopathological alterations and extensive collagen accumulation. Conversely, the treatment with either AZL or AT-MSCs significantly attenuated these alterations caused by CIS. Interestingly, the combined therapy of AZL and AT-MSCs has a superior ameliorative effect than AT-MSCs alone. In conclusion, this study, for the first time, revealed that AZL and/ or AT-MSCs successfully ameliorated the CIS-induced EMT via the inhibition of oxidative stress and TGF-ß/Smad signaling pathway. Intriguingly, AZL enhanced the effect of AT-MSCs making them promising agents for kidney protection against CIS-induced EMT.


Subject(s)
Cisplatin , Epithelial-Mesenchymal Transition , Animals , Male , Rats , Cisplatin/toxicity , Oxidative Stress , Rats, Wistar , Signal Transduction , Transforming Growth Factor beta1/metabolism , Smad Proteins/metabolism
3.
Life Sci ; 258: 118178, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32739468

ABSTRACT

AIMS: Gentamicin (GEN) is one of the most valuable aminoglycoside antibiotics utilized against life-threatening bacterial infections. Unfortunately, GEN-induced nephrotoxicity limited its clinical utility. The pathologic process of nephrotoxicity caused by GEN may involve epithelial to mesenchymal transition (EMT). Resveratrol (RES) is a natural compound was revealed to inhibit EMT in kidney. The present work was conducted to explore the potential renoprotective role of RES on GEN-induced EMT. Moreover, the underlying signaling pathway of this inhibition was investigated. MAIN METHODS: Mice were treated with GEN by intraperitoneal (i.p.) route daily for 15 days to identify EMT onset with regard to GEN-induced nephrotoxicity. To assess the ameliorative role of RES against GEN-induced EMT, RES was i.p. administrated in high and low doses before and concurrently with GEN treatment. KEY FINDINGS: GEN administration significantly deteriorated kidney functions. In addition, reduced glutathione (GSH) content and catalase (CAT) activity were significantly decreased with a concomitant increase in the content of kidney malondialdehyde (MDA) after GEN treatment. Histological changes and deposition of collagen were extensive in renal corpuscles and tubules. Increased expression of alpha smooth muscle actin (α-SMA), transforming growth factor-ß1 (TGF-ß1) and phosphorylated (p)-Smad2 were observed after GEN administration, while E-cadherin expression was decreased. On the contrary, pretreatment with both doses of RES reversed the modifications caused by GEN administration. SIGNIFICANCE: We concluded that EMT contributes to pathogenesis of GEN-induced nephrotoxicity. RES has a protective effect on GEN-induced EMT via suppressing oxidative stress and a possible involvement of TGF-ß/Smad signaling pathway.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Gentamicins/adverse effects , Kidney/metabolism , Kidney/pathology , Reactive Oxygen Species/metabolism , Resveratrol/pharmacology , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Animals , Biomarkers/blood , Fibrosis , Kidney/drug effects , Kidney/physiopathology , Male , Mice , Oxidative Stress/drug effects , Resveratrol/administration & dosage , Signal Transduction/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...