Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Life Sci ; 273: 119117, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33508293

ABSTRACT

Biosensors are important devices in clinical diagnostics, food processing, and environmental monitoring for detecting various analytes, especially viruses. These biosensors provide rapid and effective instruments for qualitative and quantitative detection of infectious diseases in real-time. Here, we report the development of biosensors based on various techniques. Additionally, we will explain the mechanisms, advantages, and disadvantages of the most common biosensors that are currently used for viral detection, which could be optical (e.g., surface-enhanced Raman scattering (SERS), Surface plasmon resonance (SPR)) and electrochemical biosensors. Based on that, this review recommends methods for efficient, simple, low-cost, and rapid detection of SARS-CoV-2 (the causative agent of COVID-19) that employ the two types of biosensors depending on attaching hemoglobin ß-chain and binding of specific antibodies with SARS-CoV-2 antigens, respectively.


Subject(s)
Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Biosensing Techniques/instrumentation , COVID-19/virology , COVID-19 Testing/instrumentation , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Equipment Design , Humans , SARS-CoV-2/isolation & purification
2.
Front Public Health ; 8: 594458, 2020.
Article in English | MEDLINE | ID: mdl-33363088

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by severe cytokine storm syndrome following inflammation. SARS-CoV-2 directly interacts with angiotensin-converting enzyme 2 (ACE-2) receptors in the human body. Complementary therapies that impact on expression of IgE and IgG antibodies, including administration of bee venom (BV), have efficacy in the management of arthritis, and Parkinson's disease. A recent epidemiological study in China showed that local beekeepers have a level of immunity against SARS-CoV-2 with and without previous exposure to virus. BV anti-inflammatory properties are associated with melittin and phospholipase A2 (PLA2), both of which show activity against enveloped and non-enveloped viruses, including H1N1 and HIV, with activity mediated through antagonist activity against interleukin-6 (IL-6), IL-8, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Melittin is associated with the underexpression of proinflammatory cytokines, including nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinases (ERK1/2), and protein kinase Akt. BV therapy also involves group III secretory phospholipase A2 in the management of respiratory and neurological diseases. BV activation of the cellular and humoral immune systems should be explored for the application of complementary medicine for the management of SARS-CoV-2 infections. BV "vaccination" is used to immunize against cytomegalovirus and can suppress metastases through the PLA2 and phosphatidylinositol-(3,4)-bisphosphate pathways. That BV shows efficacy for HIV and H1NI offers opportunity as a candidate for complementary therapy for protection against SARS-CoV-2.


Subject(s)
Bee Venoms/pharmacology , COVID-19/physiopathology , Complementary Therapies , Cytokines/immunology , Anti-Inflammatory Agents , China , Humans , Male , SARS-CoV-2
3.
Biology (Basel) ; 9(10)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992510

ABSTRACT

The majority of liver-related illnesses are caused by occupational and domestic exposure to toxic chemicals like formaldehyde (FA), which is widely common in Africa and the world at large. Hence, measures should be taken to protect humans from its hazardous effects. This study, therefore, examines the protective potential of Ganoderma lucidum (100 mg/kg body weight) on formaldehyde-induced (40%) liver oxido-inflammation in male rats. Male Wistar rats, 150-200 g, were allotted into four groups of 10 animals as follows: Group 1 was orally treated with 1 mg/mL distilled water, Group 2 was exposed to a 40% formaldehyde vapor environment for 30 min per day, Group 3 was orally treated with 100 mg/kg ethanol extract of Ganoderma lucidum, and Group 4 was co-administered formaldehyde and 100 mg/kg ethanol extract of Ganoderma lucidum. Rats were then sacrificed 24 h after administering the last dose of treatment, and the livers were excised. Ganoderma lucidum significantly reversed the formaldehyde-mediated reduction in body and organ weight. Ganoderma lucidum administration significantly prevented oxido-inflammation by reducing the levels of hydrogen peroxide and malondialdehyde and increasing the activity of antioxidant enzymes and glutathione contents, as well as the normal level of nitrite and myeloperoxidase production in FA-treated rats. Additionally, Ganoderma lucidum reversed a large decline in proinflammatory markers in formaldehyde. Furthermore, Ganoderma lucidum restores formaldehyde-induced histological alterations in the liver. Collectively, our results provide valuable information on the protective potential of Ganoderma lucidum in protecting formaldehyde-induced liver oxido-inflammation in male rats.

4.
PLoS Negl Trop Dis ; 14(8): e0008489, 2020 08.
Article in English | MEDLINE | ID: mdl-32853247

ABSTRACT

Piroplasmosis treatment has been based on the use of imidocarb dipropionate or diminazene aceturate (DA), however, their toxic effects. Therefore, the discovery of new drug molecules and targets is urgently needed. Cryptolepine (CRY) is a pharmacologically active plant alkaloid; it has significant potential as an antiprotozoal and antibacterial under different in vitro and in vivo conditions. The fluorescence assay was used for evaluating the inhibitory effect of CRY on four Babesia species and Theileria equi in vitro, and on the multiplication of B. microti in mice. The toxicity assay was evaluated on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines. The half-maximal inhibitory concentration (IC50) values of CRY on Babesia bovis, B. bigemina, B. divergens, B. caballi, and T. equi were 1740 ± 0.377, 1400 ± 0.6, 790 ± 0.32, 600 ± 0.53, and 730 ± 0.025 nM, respectively. The toxicity assay on MDBK, NIH/3T3, and HFF cell lines showed that CRY affected the viability of cells with a half-maximum effective concentration (EC50) of 86.67 ± 4.43, 95.29 ± 2.7, and higher than 100 µM, respectively. In mice experiments, CRY at a concentration of 5 mg/kg effectively inhibited the growth of B. microti, while CRY-atovaquone (AQ) and CRY-DA combinations showed higher chemotherapeutic effects than CRY alone. Our results showed that CRY has the potential to be an alternative remedy for treating piroplasmosis.


Subject(s)
Anti-Infective Agents/pharmacology , Babesia/drug effects , Babesiosis/drug therapy , Indole Alkaloids/pharmacology , Quinolines/pharmacology , Theileria/drug effects , Animals , Anti-Infective Agents/administration & dosage , Cell Line , Cell Survival/drug effects , Humans , Mice
5.
Vaccines (Basel) ; 8(3)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664587

ABSTRACT

Although regulatory B cells (Bregs) have been proven to play a suppressive role in autoimmune diseases, infections and different tumors, little is known regarding hepatocellular carcinoma (HCC), especially in hepatitis C-related settings. Herein, we analyzed the frequency of circulating Bregs, serum levels of IL-10, IL-35 and B-cell activating factor (BAFF) and investigated their association with regulatory T cells (Tregs) and disease progression in HCV-related HCC. For comparative purposes, four groups were enrolled; chronic HCV (CHC group, n = 35), HCV-related liver cirrhosis (HCV-LC group, n = 35), HCV-related HCC (HCV-HCC group, n = 60) and an apparently healthy control (Control-group, n = 20). HCC diagnosis and staging were in concordance with the Barcelona Clinic Liver Cancer (BCLC) staging system. Analysis of the percentage of Breg cells and peripheral lymphocyte subsets (Treg) was performed by flow cytometry. Serum cytokine levels of IL-10, IL-35 and B-cell activating factor (BAFF) were measured by ELISA. The frequency of Bregs was significantly higher in the HCV-HCC group compared to the other groups and controls. A significant increase was noted in late-HCC versus those in the early stages. The frequency of Bregs was positively correlated with Tregs, serum IL-10, IL-35 and BAFF. In conclusion, Peripheral Bregs were positively correlated with the frequency of Tregs, IL-10, IL-35 and BAFF, and may be associated with HCV-related HCC progression.

6.
Parasitol Res ; 119(9): 3061-3073, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32677000

ABSTRACT

The problems of parasite resistance, as well as the toxic residues to most of the commercially available antipiroplasmic drugs severely weaken their effective, curative, and environmental safe employment. Therefore, it is clear that the development of treatment options for piroplasmosis is vital for improving disease treatment and control. Ciprofloxacin is a broad-spectrum antibiotic that targets mainly the DNA replication machinery by inhibiting DNA gyrase and topoisomerase enzymes. As a result, ciprofloxacin is used for treating several bacterial and parasitic infections. In this study, the efficacy of 15 novel ciprofloxacin derivatives (NCD) that had been developed against drug-resistant Mycobacterium tuberculosis was evaluated against piroplasm parasite multiplication in vitro. The half-maximal inhibitory concentration (IC50) values of the most effective five compounds of NCD (No. 3, 5, 10, 14, 15) on Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi were 32.9, 13.7, 14.9, and 30.9; 14.9, 25.8, 13.6, and 27.5; 34.9, 33.9, 21.1, and 22.3; 26.7, 28.3, 34.5, and 29.1; and 4.7, 26.6, 33.9, and 29.1 µM, respectively. Possible detrimental effects of tested NCD on host cells were assessed using mouse embryonic fibroblast (NIH/3T3) and Madin-Darby bovine kidney (MDBK) cell lines. Tested NCD did not suppress NIH/3T3 and MDBK cell viability, even at the highest concentration used (500 µM). Combination treatments of the identified most effective compounds of NCD/diminazene aceturate (DA), /atovaquone (AQ), and /clofazimine (CF) showed mainly synergistic and additive effects. The IC50 values of NCD showed that they are promising future candidates against piroplasmosis. Further in vivo trials are required to evaluate the therapeutic potential of NCD.


Subject(s)
Antipruritics/pharmacology , Babesia/drug effects , Babesiosis/parasitology , Ciprofloxacin/analogs & derivatives , Ciprofloxacin/pharmacology , Theileria/drug effects , Theileriasis/parasitology , Animals , Babesia/growth & development , Cell Line , Cell Survival/drug effects , Humans , Mice , Theileria/growth & development
7.
Antibiotics (Basel) ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370087

ABSTRACT

Our research work was designed to investigate the curative and preventive effects of Carthamus oxycantha root extract against diarrhea and microorganisms. For the antibacterial experiment, the agar well diffusion method was used against standard bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeroginosa, and Salmonella typhi, while for the assessment of antidiarrheal activity, castor oil and the magnesium sulfate-induced diarrhea method was used on albino, laboratory-bred (BALB/c) mice at a dose rate of 200 and 400 mg/kg (body weight, b.w) orally. The methanol extract of C. oxycantha significantly (p < 0.001) decreased the frequency of defecation, and wet stools in a dose depended on the manner of after receiving magnesium sulfate (2 g/kg (b.w)) and castor oil (1.0 mL/mice). Furthermore, the extract of C. oxycantha showed concentration-dependent antimicrobial properties against S. aureus followed by S. typhi, E. coli, and P. aeroginosa bacterial strains, with inhibitions ranging from 10.5-15 mm. These findings show significant results that C. oxycantha is effective as an antidiarrheal and antibacterial agent. However, further works are needed to establish its mode of action.

8.
Foods ; 9(3)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210182

ABSTRACT

Flavonoids are a class of natural substances present in plants, fruits, vegetables, wine, bulbs, bark, stems, roots, and tea. Several attempts are being made to isolate such natural products, which are popular for their health benefits. Flavonoids are now seen as an essential component in a number of cosmetic, pharmaceutical, and medicinal formulations. Quercetin is the major polyphenolic flavonoid found in food products, including berries, apples, cauliflower, tea, cabbage, nuts, and onions that have traditionally been treated as anticancer and antiviral, and used for the treatment of allergic, metabolic, and inflammatory disorders, eye and cardiovascular diseases, and arthritis. Pharmacologically, quercetin has been examined against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium, Babesia, and Theileria parasites. Additionally, it has shown beneficial effects against Alzheimer's disease (AD), and this activity is due to its inhibitory effect against acetylcholinesterase. It has also been documented to possess antioxidant, antifungal, anti-carcinogenic, hepatoprotective, and cytotoxic activity. Quercetin has been documented to accumulate in the lungs, liver, kidneys, and small intestines, with lower levels seen in the brain, heart, and spleen, and it is extracted through the renal, fecal, and respiratory systems. The current review examines the pharmacokinetics, as well as the toxic and biological activities of quercetin.

9.
BMC Complement Med Ther ; 20(1): 87, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32183812

ABSTRACT

BACKGROUND: The antiprotozoal and antioxidant activities of Viola tricolor and Laurus nobilis have been reported recently. Thus, the existing study pursued to assess the growth inhibition effect of methanolic extract of V. tricolor (MEVT) and acetonic extract of L. nobilis (AELN) against five Babesia parasites and Theileria equi in vitro and in vivo. RESULTS: MEVT and AELN suppressed Babesia bovis, B. bigemina, B. divergens, B. caballi, and T. equi growth at half-maximal inhibitory concentration (IC50) values of 75.7 ± 2.6, 43.3 ± 1.8, 67.6 ± 2.8, 48 ± 3.8, 54 ± 2.1 µg/mL, and 86.6 ± 8.2, 33.3 ± 5.1, 62.2 ± 3.3, 34.5 ± 7.5 and 82.2 ± 9.3 µg/mL, respectively. Qualitative phytochemical estimation revealed that both extracts containing multiple bioactive constituents and significant amounts of flavonoids and phenols. The toxicity assay revealed that MEVT and AELN affected the mouse embryonic fibroblast (NIH/3 T3) and Madin-Darby bovine kidney (MDBK) cell viability with half-maximum effective concentrations (EC50) of 930 ± 29.9, 1260 ± 18.9 µg/mL, and 573.7 ± 12.4, 831 ± 19.9 µg/mL, respectively, while human foreskin fibroblasts (HFF) cell viability was not influenced even at 1500 µg/mL. The in vivo experiment revealed that the oral administration of MEVT and AELN prohibited B. microti multiplication in mice by 35.1 and 56.1%, respectively. CONCLUSIONS: These analyses indicate the prospects of MEVT and AELN as good candidates for isolating new anti-protozoal compounds which could assist in the development of new drug molecules with new drug targets.


Subject(s)
Antiprotozoal Agents/pharmacology , Babesia/drug effects , Laurus/chemistry , Plant Extracts/pharmacology , Theileria/drug effects , Viola/chemistry , Acetone , Antiprotozoal Agents/chemistry , Gas Chromatography-Mass Spectrometry , Methanol , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry
10.
Molecules ; 25(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102270

ABSTRACT

Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases.


Subject(s)
Antiprotozoal Agents/pharmacology , Babesia bovis/drug effects , Babesia microti/drug effects , Babesia/drug effects , Cinnamomum zeylanicum/chemistry , Phytochemicals/pharmacology , Theileria/drug effects , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Antiprotozoal Agents/isolation & purification , Babesia/growth & development , Babesia bovis/growth & development , Babesia microti/growth & development , Cattle , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/parasitology , Fibroblasts/drug effects , Fibroblasts/parasitology , Flavonoids/isolation & purification , Flavonoids/pharmacology , Inhibitory Concentration 50 , Mice , NIH 3T3 Cells , Parasitic Sensitivity Tests , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Saponins/isolation & purification , Saponins/pharmacology , Tannins/isolation & purification , Tannins/pharmacology , Terpenes/isolation & purification , Terpenes/pharmacology , Theileria/growth & development
11.
Pathogens ; 9(2)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079149

ABSTRACT

Atranorin (ATR), is a compound with multidirectional biological activity under different in vitro and in vivo conditions and it is effective as an antibacterial, antiviral, antiprotozoal and anti-inflammatory agent. In the current study, the in vitro as well as in vivo chemotherapeutic effect of ATR as well as its combined efficacy with the existing antibabesial drugs (diminazene aceturate (DA), atovaquone (AV) and clofazimine (CF)) were investigated on six species of piroplasm parasites. ATR suppressed B. bovis, B. bigemina, B. divergens, B. caballi and T. equi multiplication in vitro with IC50 values of 98.4 ± 4.2, 64.5 ± 3.9, 45.2 ± 5.9, 46.6 ± 2.5, and 71.3 ± 2.7 µM, respectively. The CCK test was used to examine ATR's cytotoxicity and adverse effects on different animal and human cell lines, the main hosts of piroplasm parasites and it showed that ATR affected human foreskin fibroblasts (HFF), mouse embryonic fibroblast (NIH/3T3) and Madin-Darby Bovine Kidney (MDBK) cell viability in a dose-related effect with a moderate selective index. The combined efficacy of ATR with DA, CF, and AV exhibited a synergistic and additive efficacy toward all tested species. In the in vivo experiment, ATR prohibited B. microti multiplication in mice by 68.17%. The ATR-DA and ATR-AV combination chemotherapies were more potent than ATR monotherapy. These results indicate the prospects of ATR as a drug candidate for piroplasmosis treatment.

12.
Biomolecules ; 10(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-32019140

ABSTRACT

Herbal medicinal products have been documented as a significant source for discovering new pharmaceutical molecules that have been used to treat serious diseases. Many plant species have been reported to have pharmacological activities attributable to their phytoconstituents such are glycosides, saponins, flavonoids, steroids, tannins, alkaloids, terpenes, etc. Syzygium aromaticum (clove) is a traditional spice that has been used for food preservation and possesses various pharmacological activities. S. aromaticum is rich in many phytochemicals as follows: sesquiterpenes, monoterpenes, hydrocarbon, and phenolic compounds. Eugenyl acetate, eugenol, and ß-caryophyllene are the most significant phytochemicals in clove oil. Pharmacologically, S. aromaticum has been examined toward various pathogenic parasites and microorganisms, including pathogenic bacteria, Plasmodium, Babesia, Theileria parasites, Herpes simplex, and hepatitis C viruses. Several reports documented the analgesic, antioxidant, anticancer, antiseptic, anti-depressant, antispasmodic, anti-inflammatory, antiviral, antifungal, and antibacterial activity of eugenol against several pathogenic bacteria including methicillin-resistant Staphylococcusepidermidis and S. aureus. Moreover, eugenol was found to protect against CCl4-induced hepatotoxicity and showed a potential lethal efficacy against the multiplication of various parasites including Giardia lamblia, Fasciolagigantica, Haemonchuscontortus, and Schistosomamansoni. This review examines the phytochemical composition and biological activities of clove extracts along with clove essential oil and the main active compound, eugenol, and implicates new findings from gas chromatography-mass spectroscopy (GC-MS) analysis.


Subject(s)
Clove Oil/chemistry , Eugenol/analogs & derivatives , Plant Extracts/chemistry , Syzygium/chemistry , Animals , Antioxidants/chemistry , Eugenol/pharmacology , Gas Chromatography-Mass Spectrometry , Humans , Mice , Microbial Sensitivity Tests , Oils, Volatile/chemistry
13.
Article in English | MEDLINE | ID: mdl-31254719

ABSTRACT

Diminazene aceturate (DA) and imidocarb dipropionate are commonly used in livestock as antipiroplasm agents. However, toxic side effects are common in animals treated with these two drugs. Therefore, evaluations of novel therapeutic agents with high efficacy against piroplasm parasites and low toxicity to host animals are of paramount importance. In this study, the 400 compounds in the Pathogen Box provided by the Medicines for Malaria Venture foundation were screened against Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi. A fluorescence-based method using SYBR Green 1 stain was used for initial in vitro screening and determination of the half maximal inhibitory concentration (IC50). The initial in vitro screening performed using a 1 µM concentration as baseline revealed nine effective compounds against four tested parasites. Two "hit" compounds, namely MMV021057 and MMV675968, that showed IC50 < 0.3 µM and a selectivity index (SI)> 100 were selected. The IC50s of MMV021057 and MMV675968 against B. bovis, B. bigemina, T. equi and B. caballi were 23, 39, 229, and 146 nM, and 2.9, 3, 25.7, and 2.9 nM, respectively. In addition, a combination of MMV021057 and DA showed additive or synergistic effects against four tested parasites, while combinations of MMV021057 with MMV675968 and of MMV675968 with DA showed antagonistic effects. In mice, treated with 50 mg/kg MMV021057 and 25 mg/kg MMV675968 inhibited the growth of Babesia microti by 54 and 64%, respectively, as compared to the untreated group on day 8. Interestingly, a combination treatment with 6.25 mg/kg DA and 25 mg/kg MMV021057 inhibited B. microti by 91.6%, which was a stronger inhibition than that by single treatments with 50 mg/kg MMV021057 and 25 mg/kg DA, which showed 54 and 83% inhibition, respectively. Our findings indicated that MMV021057, MMV675968, and the combination treatment with MMV021057 and DA are prospects for further development of antipiroplasm drugs.


Subject(s)
Antipruritics/administration & dosage , Babesia/drug effects , Babesiosis/drug therapy , Drug Evaluation, Preclinical , Erythrocytes/parasitology , Theileria/drug effects , Theileriasis/drug therapy , Animals , Babesia/physiology , Babesiosis/blood , Babesiosis/parasitology , Cattle , Drug Synergism , Drug Therapy, Combination , Female , Humans , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred BALB C , Theileria/physiology , Theileriasis/blood , Theileriasis/parasitology
14.
Ticks Tick Borne Dis ; 10(5): 949-958, 2019 08.
Article in English | MEDLINE | ID: mdl-31101552

ABSTRACT

Currently, chemotherapeutics against piroplasmosis are also associated with toxicity and the emergence of drug-resistant parasites. Therefore, the discovery of new drug compounds is necessary for the effective control of bovine and equine piroplasms. Syzygium aromaticum (clove) and Camellia sinensis (green tea) have several documented medicinal properties. In the present study, the growth-inhibiting effects of S. aromaticum and C. sinensis methanolic extracts were evaluated in vitro and in vivo. The half-maximal inhibitory concentration (IC50) values for methanolic S. aromaticum against Babesia bovis, B. bigemina, B. divergens, B. caballi, and Theileria equi were 109.8 ± 3.8, 8.7 ± 0.09, 76.4 ± 4.5, 19.6 ± 2.2, and 60 ± 7.3 µg/ml, respectively. Methanolic C. sinensis exhibited IC50 values of 114 ± 6.1, 71.3 ± 3.7, 35.9 ± 6.8, 32.7 ± 20.3, and 60.8 ± 7.9 µg/ml against B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi, respectively. The toxicity assay on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines showed that methanolic S. aromaticum and methanolic C. sinensis affected only the viability of the MDBK cell line with half-maximal effective concentrations (EC50) of 894.7 ± 4.9 and 473.7 ± 7.4 µg/ml, respectively, while the viability of NIH/3T3 and HFF cell lines was not affected even at 1000 µg/ml. In the in vivo experiment, methanolic S. aromaticum and methanolic C. sinensis oral treatments at 150 mg/kg inhibited the growth of Babesia microti in mice by 69.2% and 42.4%, respectively. These findings suggest that methanolic S. aromaticum and methanolic C. sinensis extracts have the potential as alternative remedies for treating piroplasmosis.


Subject(s)
Antiprotozoal Agents/pharmacology , Babesia/drug effects , Camellia sinensis/chemistry , Plant Extracts/pharmacology , Syzygium/chemistry , Theileria/drug effects , 3T3 Cells , Animals , Babesia/growth & development , Cell Line , Dogs , Humans , Madin Darby Canine Kidney Cells , Mice , Plant Extracts/chemistry , Species Specificity , Theileria/growth & development
15.
PLoS Negl Trop Dis ; 13(5): e0007030, 2019 05.
Article in English | MEDLINE | ID: mdl-31125333

ABSTRACT

BACKGROUND: Chemotherapy is a principle tool for the control and prevention of piroplasmosis. The search for a new chemotherapy against Babesia and Theileria parasites has become increasingly urgent due to the toxic side effects of and developed resistance to the current drugs. Chalcones have attracted much attention due to their diverse biological activities. With the aim to discover new drugs and drug targets, in vitro and in vivo antibabesial activity of trans-chalcone (TC) and chalcone 4 hydrate (CH) alone and combined with diminazene aceturate (DA), clofazimine (CF) and atovaquone (AQ) were investigated. METHODOLOGY/PRINCIPAL FINDINGS: The fluorescence-based assay was used for evaluating the inhibitory effect of TC and CH on four Babesia species, including B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi, the combination with DA, CF, and AQ on in vitro cultures, and on the multiplication of a B. microti-infected mouse model. The cytotoxicity of compounds was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines. The half maximal inhibitory concentration (IC50) values of TC and CH against B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi were 69.6 ± 2.3, 33.3 ± 1.2, 64.8 ± 2.5, 18.9 ± 1.7, and 14.3 ± 1.6 µM and 138.4 ± 4.4, 60.9 ± 1.1, 82.3 ± 2.3, 27.9 ± 1.2, and 19.2 ± 1.5 µM, respectively. In toxicity assays, TC and CH affected the viability of MDBK, NIH/3T3, and HFF cell lines the with half maximum effective concentration (EC50) values of 293.9 ± 2.9, 434.4 ± 2.7, and 498 ± 3.1 µM and 252.7 ± 1.7, 406.3 ± 9.7, and 466 ± 5.7 µM, respectively. In the mouse experiment, TC reduced the peak parasitemia of B. microti by 71.8% when administered intraperitoneally at 25 mg/kg. Combination therapies of TC-DA and TC-CF were more potent against B. microti infection in mice than their monotherapies. CONCLUSIONS/SIGNIFICANCE: In conclusion, both TC and CH inhibited the growth of Babesia and Theileria in vitro, and TC inhibited the growth of B. microti in vivo. Therefore, TC and CH could be candidates for the treatment of piroplasmosis after further studies.


Subject(s)
Antiprotozoal Agents/administration & dosage , Babesia/drug effects , Babesia/growth & development , Babesiosis/drug therapy , Chalcones/administration & dosage , Theileria/drug effects , Theileria/growth & development , Theileriasis/drug therapy , Animals , Antiprotozoal Agents/chemistry , Babesia/genetics , Babesiosis/parasitology , Cell Line , Chalcones/chemistry , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Mice, Inbred BALB C , Theileria/genetics , Theileriasis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...