Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
PLoS Med ; 21(5): e1004376, 2024 May.
Article in English | MEDLINE | ID: mdl-38723040

ABSTRACT

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Subject(s)
Antimalarials , Chemoprevention , Drug Resistance , Malaria , Humans , Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria/prevention & control , Malaria/transmission , Malaria/epidemiology , Chemoprevention/methods , Bayes Theorem , Genotype , Research Design
3.
Int J Infect Dis ; 144: 107061, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631508

ABSTRACT

OBJECTIVES: The accuracy of malaria rapid diagnostic tests is threatened by Plasmodium falciparum with pfhrp2/3 deletions. This study compares gene deletion prevalence determined by multiplex real time polymerase chain reaction (qPCR) and conventional polymerase chain reaction (cPCR) using existing samples with clonality previously determined by microsatellite genotyping. METHODS: Multiplex qPCR was used to estimate prevalence of pfhrp2/3 deletions in three sets of previously collected patient samples from Eritrea and Peru. The qPCR was validated by multiplex digital polymerase chain reaction. Sample classification was compared with cPCR, and receiver operating characteristic curve analysis was used to determine the optimal ΔCq threshold that aligned the results of the two assays. RESULTS: qPCR classified 75% (637 of 849) of samples as single, and 212 as mixed-pfhrp2/3 genotypes, with a positive association between clonality and proportion of mixed-pfhrp2/3 genotype samples. The sample classification agreement between cPCR and qPCR was 75.1% (95% confidence interval [CI] 68.6-80.7%) and 47.8% (95% CI 38.9-56.9%) for monoclonal and polyclonal infections. The qPCR prevalence estimates of pfhrp2/3 deletions showed almost perfect (κ = 0.804, 95% CI 0.714-0.895) and substantial agreement (κ = 0.717, 95% CI 0.562-0.872) with cPCR for Peru and 2016 Eritrean samples, respectively. For 2019 Eritrean samples, the prevalence of double pfhrp2/3 deletions was approximately two-fold higher using qPCR. The optimal threshold for matching the assay results was ΔCq = 3. CONCLUSIONS: Multiplex qPCR and cPCR produce comparable estimates of gene deletion prevalence when monoclonal infections dominate; however, qPCR provides higher estimates where multi-clonal infections are common.


Subject(s)
Antigens, Protozoan , Malaria, Falciparum , Multiplex Polymerase Chain Reaction , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Protozoan Proteins/genetics , Multiplex Polymerase Chain Reaction/methods , Prevalence , Antigens, Protozoan/genetics , Gene Deletion , Real-Time Polymerase Chain Reaction/methods , Peru/epidemiology , Genotype
4.
Clin Infect Dis ; 78(2): 445-452, 2024 02 17.
Article in English | MEDLINE | ID: mdl-38019958

ABSTRACT

BACKGROUND: Recent cases of clinical failure in malaria patients in the United Kingdom (UK) treated with artemether-lumefantrine have implications for malaria chemotherapy worldwide. METHODS: Parasites were isolated from an index case of confirmed Plasmodium falciparum treatment failure after standard treatment, and from comparable travel-acquired UK malaria cases. Drug susceptibility in vitro and genotypes at 6 resistance-associated loci were determined for all parasite isolates and compared with clinical outcomes for each parasite donor. RESULTS: A traveler, who returned to the UK from Uganda in 2022 with Plasmodium falciparum malaria, twice failed treatment with full courses of artemether-lumefantrine. Parasites from the patient exhibited significantly reduced susceptibility to artemisinin (ring-stage survival, 17.3% [95% confidence interval {CI}, 13.6%-21.1%]; P < .0001) and lumefantrine (effective concentration preventing 50% of growth = 259.4 nM [95% CI, 130.6-388.2 nM]; P = .001). Parasite genotyping identified an allele of pfk13 encoding both the A675V variant in the Pfk13 propeller domain and a novel L145V nonpropeller variant. In vitro susceptibility testing of 6 other P. falciparum lines of Ugandan origin identified reduced susceptibility to artemisinin and lumefantrine in 1 additional line, also from a 2022 treatment failure case. These parasites did not harbor a pfk13 propeller domain variant but rather the novel nonpropeller variant T349I. Variant alleles of pfubp1, pfap2mu, and pfcoronin were also identified among the 7 parasite lines. CONCLUSIONS: We confirm, in a documented case of artemether-lumefantrine treatment failure imported from Uganda, the presence of pfk13 mutations encoding L145V and A675V. Parasites with reduced susceptibility to both artemisinin and lumefantrine may be emerging in Uganda.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Humans , Lumefantrine/pharmacology , Lumefantrine/therapeutic use , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Artemether, Lumefantrine Drug Combination/therapeutic use , Uganda , Drug Resistance , Artemether/pharmacology , Artemether/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Treatment Failure , United Kingdom , Protozoan Proteins/genetics
5.
Genome Med ; 15(1): 96, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950308

ABSTRACT

BACKGROUND: Malaria continues to be a major threat to global public health. Whole genome sequencing (WGS) of the underlying Plasmodium parasites has provided insights into the genomic epidemiology of malaria. Genome sequencing is rapidly gaining traction as a diagnostic and surveillance tool for clinical settings, where the profiling of co-infections, identification of imported malaria parasites, and detection of drug resistance are crucial for infection control and disease elimination. To support this informatically, we have developed the Malaria-Profiler tool, which rapidly (within minutes) predicts Plasmodium species, geographical source, and resistance to antimalarial drugs directly from WGS data. RESULTS: The online and command line versions of Malaria-Profiler detect ~ 250 markers from genome sequences covering Plasmodium speciation, likely geographical source, and resistance to chloroquine, sulfadoxine-pyrimethamine (SP), and other anti-malarial drugs for P. falciparum, but also providing mutations for orthologous resistance genes in other species. The predictive performance of the mutation library was assessed using 9321 clinical isolates with WGS and geographical data, with most being single-species infections (P. falciparum 7152/7462, P. vivax 1502/1661, P. knowlesi 143/151, P. malariae 18/18, P. ovale ssp. 5/5), but co-infections were identified (456/9321; 4.8%). The accuracy of the predicted geographical profiles was high to both continental (96.1%) and regional levels (94.6%). For P. falciparum, markers were identified for resistance to chloroquine (49.2%; regional range: 24.5% to 100%), sulfadoxine (83.3%; 35.4- 90.5%), pyrimethamine (85.4%; 80.0-100%) and combined SP (77.4%). Markers associated with the partial resistance of artemisinin were found in WGS from isolates sourced from Southeast Asia (30.6%). CONCLUSIONS: Malaria-Profiler is a user-friendly tool that can rapidly and accurately predict the geographical regional source and anti-malarial drug resistance profiles across large numbers of samples with WGS data. The software is flexible with modifiable bioinformatic pipelines. For example, it is possible to select the sequencing platform, display specific variants, and customise the format of outputs. With the increasing application of next-generation sequencing platforms on Plasmodium DNA, Malaria-Profiler has the potential to be integrated into point-of-care and surveillance settings, thereby assisting malaria control. Malaria-Profiler is available online (bioinformatics.lshtm.ac.uk/malaria-profiler) and as standalone software ( https://github.com/jodyphelan/malaria-profiler ).


Subject(s)
Antimalarials , Coinfection , Malaria, Falciparum , Malaria, Vivax , Malaria , Parasites , Plasmodium , Humans , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Coinfection/drug therapy , Malaria/drug therapy , Malaria/parasitology , Plasmodium/genetics , Malaria, Falciparum/drug therapy , Chloroquine/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/genetics
6.
J Antimicrob Chemother ; 78(3): 788-791, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36680454

ABSTRACT

BACKGROUND: Chemoprevention plays an important role in malaria control strategy. Perennial malaria chemoprevention (PMC) using sulfadoxine/pyrimethamine (SP) is a WHO-approved strategy to combat malaria in young children and may lead to drug pressure. Introducing SP-PMC may therefore be compromised due to the emergence of Plasmodium falciparum resistant to SP, particularly mutation at K540E of the dihydropteroate synthase (dhps) gene. Molecular surveillance of resistance markers can support assessment of antimalarial efficacy and effectiveness. High prevalence of 540E is associated with reduced effectiveness of SP, and areas with more than 50% prevalence are considered unsuitable for intermittent preventative treatment in pregnancy (IPTp) implementation. Assessing 540E prevalence is an important undertaking before implementation of SP-PMC. METHODS: We conducted a rapid surveillance of dhps-540E to assess the suitability of SP as PMC in field studies from Ebonyi and Osun states in Nigeria. We used an in-house developed amplicon deep-sequencing method targeting part of the dhps gene. RESULTS: Our data reveal that 18.56% of individuals evaluated carried the 540E mutation mixed with the WT K540. Mutant variant 540E alone was not found, and 80% of isolates harboured only WT (K540). Clonal analysis of the sequencing data shows a very low proportion of 540E circulating in both states. CONCLUSIONS: Our data show that both states are suitable for SP-PMC implementation and, based on this finding, SP-PMC was implemented in Osun in 2022. Continuous monitoring of 540E will be required to ensure the chemoprevention effectiveness of SP in Nigeria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Pregnancy , Child , Female , Humans , Child, Preschool , Pyrimethamine , Sulfadoxine , Dihydropteroate Synthase/genetics , Malaria, Falciparum/drug therapy , Nigeria , Prevalence , Drug Resistance/genetics , Antimalarials/pharmacology , Malaria/drug therapy , Plasmodium falciparum , Drug Combinations , Biomarkers , High-Throughput Nucleotide Sequencing
7.
Lancet Infect Dis ; 23(3): 361-370, 2023 03.
Article in English | MEDLINE | ID: mdl-36328000

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention is used in 13 countries in the Sahel region of Africa to prevent malaria in children younger than 5 years. Resistance of Plasmodium falciparum to seasonal malaria chemoprevention drugs across the region is a potential threat to this intervention. METHODS: Between December, 2015, and March, 2016, and between December, 2017, and March, 2018, immediately following the 2015 and 2017 malaria transmission seasons, community surveys were done among children younger than 5 years and individuals aged 10-30 years in districts implementing seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine in Burkina Faso, Chad, Guinea, Mali, Nigeria, Niger and The Gambia. Dried blood samples were collected and tested for P falciparum DNA by PCR. Resistance-associated haplotypes of the P falciparum genes crt, mdr1, dhfr, and dhps were identified by quantitative PCR and sequencing of isolates from the collected samples, and survey-weighted prevalence and prevalence ratio between the first and second surveys were estimated for each variant. FINDINGS: 5130 (17·5%) of 29 274 samples from 2016 and 2176 (7·6%) of 28 546 samples from 2018 were positive for P falciparum on quantitative PCR. Among children younger than 5 years, parasite carriage decreased from 2844 of 14 345 samples (19·8% [95% CI 19·2-20·5]) in 2016 to 801 of 14 019 samples (5·7% [5·3-6·1]) in 2018 (prevalence ratio 0·27 [95% CI 0·24-0·31], p<0·0001). Genotyping found no consistent evidence of increasing prevalence of amodiaquine resistance-associated variants of crt and mdr1 between 2016 and 2018. The dhfr haplotype IRN (consisting of 51Ile-59Arg-108Asn) was common at both survey timepoints, but the dhps haplotype ISGEAA (431Ile-436Ser-437Gly-540Glu-581Ala-613Ala), crucial for resistance to sulfadoxine-pyrimethamine, was always rare. Parasites carrying amodiaquine resistance-associated variants of both crt and mdr1 together with dhfr IRN and dhps ISGEAA occurred in 0·05% of isolates. The emerging dhps haplotype VAGKGS (431Val-436Ala-437Gly-540Lys-581Gly-613Ser) was present in four countries. INTERPRETATION: In seven African countries, evidence of a significant reduction in parasite carriage among children receiving seasonal malaria chemoprevention was found 2 years after intervention scale-up. Combined resistance-associated haplotypes remained rare, and seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine is expected to retain effectiveness. The threat of future erosion of effectiveness due to dhps variant haplotypes requires further monitoring. FUNDING: Unitaid.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Child , Humans , Plasmodium falciparum , Amodiaquine/therapeutic use , Haplotypes , Antimalarials/therapeutic use , Seasons , Prevalence , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Drug Combinations , Chemoprevention , Nigeria , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/therapeutic use , Genomics , Drug Resistance/genetics
8.
Parasite Epidemiol Control ; 19: e00276, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36263093

ABSTRACT

Background: Over 90% of severe malaria (SM) cases occur in African children. Parenteral artesunate is currently the recommended treatment for SM. Studies of parasite clearance in paediatric SM cases are needed for assessment of therapeutic outcomes but are lacking in Africa. Methods: Severe malaria patients were recruited in the children's emergency ward at Ho Teaching Hospital, Ghana, in 2018. Blood samples were taken upon admission, every 24 h for 3 days and 1 week after treatment, and DNA extracted. Parasitaemia and parasite densities were performed by microscopy at enrolment and the follow-up days wherever possible. Relative parasite density was measured at each timepoint by duplex qPCR and parameters of parasite clearance estimated. Results: Of 25 evaluable SM patients, clearance of qPCR-detectable parasites occurred within 48 h for 17 patients, but three out of the remaining eight were still qPCR-positive on day 3. Increased time to parasite clearance was seen in children ≥5 years old, those with lower haemoglobin levels and those with a high number of previous malaria diagnoses, but these associations were not statistically significant. Conclusion: We examined parasite clearance dynamics among paediatric cases of SM. Our observations suggest that daily sampling for qPCR estimation of P. falciparum peripheral density is a useful method for assessing treatment response in hospitalised SM cases. The study demonstrated varied parasite clearance response, thus illuminating the complex nature of the mechanism in this important patient group, and further investigations utilizing larger sample sizes are needed to confirm our findings.

10.
Genes (Basel) ; 13(9)2022 09 13.
Article in English | MEDLINE | ID: mdl-36140809

ABSTRACT

Malaria rapid diagnosis test (RDT) is crucial for managing the disease, and the effectiveness of detection depends on parameters such as sensitivity and specificity of the RDT. Several factors can affect the performance of RDT. In this study, we focused on the pfhrp2 sequence variation and its impact on RDTs targeted by antigens encoded by Plasmodium falciparum histidine-rich protein 2 (pfhrp2). Field samples collected during cross-sectional surveys in Tanzania were sequenced to investigate the pfhrp2 sequence diversity and evaluate the impact on HRP2-based RDT performance. We observed significant mean differences in amino acid repeats between current and previous studies. Several new amino acid repeats were found to occur at different frequencies, including types AAY, AHHAHHAAN, and AHHAA. Based on the abundance of types 2 and 7 amino acid repeats, the binary predictive model was able to predict RDT insensitivity by about 69% in the study area. About 85% of the major epitopes targeted by monoclonal antibodies (MAbs) in RDT were identified. Our study suggested that the extensive sequence variation in pfhrp2 can contribute to reduced RDT sensitivity. The correlation between the different combinations of amino acid repeats and the performance of RDT in different malaria transmission settings should be investigated further.


Subject(s)
Malaria, Falciparum , Malaria , Antibodies, Monoclonal , Cross-Sectional Studies , Epitopes , Histidine/genetics , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Tanzania
11.
Malar J ; 21(1): 201, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35751070

ABSTRACT

Rapid diagnostic tests (RDTs) detecting Plasmodium falciparum histidine-rich protein 2 (HRP2) have been an important tool for malaria diagnosis, especially in resource-limited settings lacking quality microscopy. Plasmodium falciparum parasites with deletion of the pfhrp2 gene encoding this antigen have now been identified in dozens of countries across Asia, Africa, and South America, with new reports revealing a high prevalence of deletions in some selected regions. To determine whether HRP2-based RDTs are appropriate for continued use in a locality, focused surveys and/or surveillance activities of the endemic P. falciparum population are needed. Various survey and laboratory methods have been used to determine parasite HRP2 phenotype and pfhrp2 genotype, and the data collected by these different methods need to be interpreted in the appropriate context of survey and assay utilized. Expression of the HRP2 antigen can be evaluated using point-of-care RDTs or laboratory-based immunoassays, but confirmation of a deletion (or mutation) of pfhrp2 requires more intensive laboratory molecular assays, and new tools and strategies for rigorous but practical data collection are particularly needed for large surveys. Because malaria diagnostic strategies are typically developed at the national level, nationally representative surveys and/or surveillance that encompass broad geographical areas and large populations may be required. Here is discussed contemporary assays for the phenotypic and genotypic evaluation of P. falciparum HRP2 status, consider their strengths and weaknesses, and highlight key concepts relevant to timely and resource-conscious workflows required for efficient diagnostic policy decision making.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Antigens, Protozoan/genetics , Diagnostic Tests, Routine/methods , Gene Deletion , Histidine/genetics , Humans , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
12.
Sci Rep ; 12(1): 5802, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388127

ABSTRACT

Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3 (pfhrp2/3) genes have been reported in several parts of the world. These deletions are known to compromise the effectiveness of HRP2-based malaria rapid diagnostic tests (HRP2-RDT). The National Malaria Control Programme (NMCP) in Tanzania adopted HRP2-RDTs as a routine tool for malaria diagnosis in 2009 replacing microscopy in many Health facilities. We investigated pfhrp2/3 deletions in 122 samples from two areas with diverse malaria transmission intensities in Northeastern Tanzania. Pfhrp2 deletion was confirmed in 1.6% of samples while pfhrp3 deletion was confirmed in 50% of samples. We did not find parasites with both pfhrp2 and pfhrp3 deletions among our samples. Results from this study highlight the need for systematic surveillance of pfhrp2/3 deletions in Tanzania to understand their prevalence and determine their impact on the performance of mRDT.


Subject(s)
Malaria, Falciparum , Malaria , Antigens, Protozoan/genetics , Gene Deletion , Histidine/genetics , Humans , Malaria/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Tanzania
13.
Antimicrob Agents Chemother ; 65(8): e0087321, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34060901

ABSTRACT

A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination , Burkina Faso , Drug Combinations , Ethanolamines/therapeutic use , Humans , Malaria, Falciparum/drug therapy , Mali , Parasitemia/drug therapy , Plasmodium falciparum/genetics , Treatment Failure
14.
Int J Infect Dis ; 108: 137-144, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33991679

ABSTRACT

OBJECTIVES: Our objective was to systematically investigate false-negative histidine-rich protein 2 rapid diagnostic tests (HRP2-RDT) in imported Plasmodium falciparum malaria cases from travelers to the UK and the Republic of Ireland (RoI). METHODS: Five imported malaria cases in travellers returning to the UK and RoI from East Africa were reported to the PHE Malaria Reference Laboratory as negative according to histidine-rich protein (HRP2)-RDT. The cases were systematically investigated using microscopic, RDT, molecular, genomic, and in in vitro approaches. RESULTS: In each case, HRP2-RDT was negative, whereas microscopy confirmed the presence of P. falciparum. Further analysis revealed that the genes encoding HRP2 and HRP3 were deleted in three of the five cases. Whole-genome sequencing in one of these isolates confirmed deletions in P. falciparum chromosomes 8 and 13. Our study produced evidence that the fourth case, which had high parasitemia at clinical presentation, was a rare example of antigen saturation ('prozone-like effect'), leading to a false negative in the HRP2-RDT, while the fifth case was due to low parasitemia. CONCLUSIONS: False-negative HRP2-RDT results with P. falciparum are concerning. Our findings emphasise the necessity of supporting the interpretation of RDT results with microscopy, in conjunction with clinical observations, and sets out a systematic approach to identifying parasites carrying pfhrp2 and pfhrp3 deletions.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Antigens, Protozoan/genetics , Diagnostic Tests, Routine , Gene Deletion , Humans , Ireland/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , United Kingdom/epidemiology
15.
Trans R Soc Trop Med Hyg ; 115(5): 531-537, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33823558

ABSTRACT

BACKGROUND: In Nigeria, indiscriminate use of antimalarial drugs may contribute to the threat of drug resistance, but this has not been evaluated among people living with human immunodeficiency virus (HIV). METHODS: HIV-positive adults attending a university hospital HIV clinic and HIV-negative adult volunteers from the university hospital community with a positive blood film were treated with artemether-lumefantrine. Parasite DNA from before and after treatment was polymerase chain reaction amplified to identify molecular markers of drug susceptibility. RESULTS: The pfcrt76T genotype was prevalent among both HIV-positive and HIV-negative participants (78.6% and 68.2%, respectively). Three new mutations in the pfmdr1 gene-F73S, S97L and G165R-and the uncommon pfdhps S436F variant were detected, whereas pfdhps K540E and pfdhfr I164L were absent. The A437G allele of pfdhps predominated (62/66 [94%]). The I431 V mutation was found in 19 of 66 pretreatment pfdhps sequences (28.8%). The pfmdr1 86N allele was significantly more common at day 3 post-treatment than at baseline (odds ratio 8.77 [95% confidence interval 1.21 to 380]). CONCLUSIONS: We found evidence of continued chloroquine use among HIV-positive individuals. Selection for the pfmdr1 86N after artemether-lumefantrine treatment was observed, indicating a possible threat to antimalarial efficacy in the study area. The complexity of pfdhps haplotypes emphasises the need for careful monitoring of anti-folate susceptibility in Nigeria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Adult , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Drug Combinations , Drug Resistance/genetics , HIV , Humans , Malaria/complications , Malaria/drug therapy , Malaria, Falciparum/complications , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Nigeria , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
17.
Sci Rep ; 10(1): 12822, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32733079

ABSTRACT

In remote areas of malaria-endemic countries, rapid diagnostic tests (RDTs) have dramatically improved parasitological confirmation of suspected malaria cases, especially when skilled microscopists are not available. This study was designed to determine the frequency of Plasmodium falciparum isolates with histidine-rich protein 2 (pfhrp2) gene deletion as one of the possible factors contributing to the failure of PfHRP2-based RDTs in detecting malaria. A total of 300 blood samples were collected from several health centres in Nyala City, Western Sudan. The performance of PfHRP2-based RDTs in relation to microscopy was examined and the PCR-confirmed samples were investigated for the presence of pfhrp2 gene. A total of 113 out of 300 patients were P. falciparum positive by microscopy. Among them, 93.81% (106 out of 113) were positives by the PfHRP2 RDTs. Seven isolates were identified as false negative on the basis of the RDTs results. Only one isolate (0.9%; 1/113) potentially has pfhrp2 gene deletion. The sensitivity and specificity of PfHRP2-based RDTs were 93.81% and 100%, respectively. The results provide insights into the pfhrp2 gene deletion amongst P. falciparum population from Sudan. However, further studies with a large and systematic collection from different geographical settings across the country are needed.


Subject(s)
Antigens, Protozoan/genetics , Gene Deletion , Malaria, Falciparum/diagnosis , Molecular Diagnostic Techniques/methods , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Female , Humans , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/isolation & purification , Sensitivity and Specificity , Sudan
18.
Am J Trop Med Hyg ; 103(2): 558-560, 2020 08.
Article in English | MEDLINE | ID: mdl-32553046

ABSTRACT

Rapid diagnostic tests (RDTs) play a critical role in malaria diagnosis and control. The emergence of Plasmodium falciparum parasites that can evade detection by RDTs threatens control and elimination efforts. These parasites lack or have altered genes encoding histidine-rich proteins (HRPs) 2 and 3, the antigens recognized by HRP2-based RDTs. Surveillance of such parasites is dependent on identifying false-negative RDT results among suspected malaria cases, a task made more challenging during the current pandemic because of the overlap of symptoms between malaria and COVID-19, particularly in areas of low malaria transmission. Here, we share our perspective on the emergence of P. falciparum parasites lacking HRP2 and HRP3, and the surveillance needed to identify them amid the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Pneumonia, Viral/epidemiology , Africa , Antigens, Protozoan/analysis , Betacoronavirus , COVID-19 , Humans , Malaria, Falciparum/epidemiology , Pandemics , Protozoan Proteins/analysis , SARS-CoV-2
19.
Article in English | MEDLINE | ID: mdl-32393498

ABSTRACT

Artemisinin-based combination therapy (ACT) is the first-line antimalarial regimen in Indonesia. Susceptibility of Plasmodium falciparum to artemisinin is falling in the Greater Mekong subregion, but it is not known whether the efficacy of current combinations is also threatened in nearby Sumatera. We evaluated the genetic loci pfcrt, pfmdr1, and pfk13, considered to be under selection by artemisinin combination therapy, among 404 P. falciparum infections identified by PCR detection in a cross-sectional survey of 3,731 residents of three regencies. The pfcrt haplotype SVMNT (codons 72 to 76) was the most prevalent and displayed significant linkage disequilibrium with the pfmdr1 haplotype YY (codons 86 and 184) (odds ratio [OR] 26.7; 95% confidence interval [CI], 5.96 to 239.4; P < 0.001). This contrasts with Mekong countries, where the CVIET haplotype of pfcrt predominates. Among 231 evaluable isolates, only 9 (3.9%) showed any evidence of nonsynonymous gene variants in the propeller domain of pfk13 The Thr474Ala variant was seen in six individuals, and Cys580Tyr was identified with low confidence in only a single isolate from an asymptomatic individual. Among a subset of 117 symptomatic P. falciparum-infected individuals randomized to receive either dihydroartemisinin-piperaquine or artemether-lumefantrine, the treatment outcome was not associated with pretreatment genotype. However, submicroscopic persistent parasites at day 28 or day 42 of follow-up were significantly more likely to harbor the pfmdr1 haplotype NF (codons 86 and 184) than were pretreatment isolates (P < 0.001 for both treatment groups). Current ACT regimens appear to be effective in Sumatera, but evidence of persistent submicroscopic infection in some patients suggests further detailed studies of drug susceptibility should be undertaken.


Subject(s)
Antimalarials , Malaria, Falciparum , Alleles , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination , Cross-Sectional Studies , Drug Resistance , Humans , Indonesia , Malaria, Falciparum/drug therapy , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
20.
EBioMedicine ; 55: 102757, 2020 May.
Article in English | MEDLINE | ID: mdl-32403083

ABSTRACT

BACKGROUND: Many health facilities in malaria endemic countries are dependent on Rapid diagnostic tests (RDTs) for diagnosis and some National Health Service (NHS) hospitals without expert microscopists rely on them for diagnosis out of hours. The emergence of P. falciparum lacking the gene encoding histidine-rich protein 2 and 3 (HRP2 and HRP3) and escaping RDT detection threatens progress in malaria control and elimination. Currently, confirmation of RDT negative due to the deletion of pfhrp2 and pfhrp3, which encodes a cross-reactive protein isoform, requires a series of PCR assays. These tests have different limits of detection and many laboratories have reported difficulty in confirming the absence of the deletions with certainty. METHODS: We developed and validated a novel and rapid multiplex real time quantitative (qPCR) assay to detect pfhrp2, pfhrp3, confirmatory parasite and human reference genes simultaneously. We also applied the assay to detect pfhrp2 and pfhrp3 deletion in 462 field samples from different endemic countries and UK travellers. RESULTS: The qPCR assay demonstrated diagnostic sensitivity of 100% (n = 19, 95% CI= (82.3%; 100%)) and diagnostic specificity of 100% (n = 31; 95% CI= (88.8%; 100%)) in detecting pfhrp2 and pfhrp3 deletions. In addition, the assay estimates P. falciparum parasite density and accurately detects pfhrp2 and pfhrp3 deletions masked in polyclonal infections. We report pfhrp2 and pfhrp3 deletions in parasite isolates from Kenya, Tanzania and in UK travellers. INTERPRETATION: The new qPCR is easily scalable to routine surveillance studies in countries where P. falciparum parasites lacking pfhrp2 and pfhrp3 are a threat to malaria control.


Subject(s)
Antigens, Protozoan/genetics , DNA, Protozoan/genetics , Gene Deletion , Malaria, Falciparum/diagnosis , Multiplex Polymerase Chain Reaction/methods , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Diagnostic Tests, Routine , Gene Expression , Humans , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Multiplex Polymerase Chain Reaction/standards , Plasmodium falciparum/pathogenicity , Tanzania/epidemiology , Travel , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...