Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 21(1): 781, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34372793

ABSTRACT

BACKGROUND: Detection of tuberculosis disease (TB) and timely identification of Mycobacterium tuberculosis (Mtb) strains that are resistant to treatment are key to halting tuberculosis transmission, improving treatment outcomes, and reducing mortality. METHODS: We used 332,657 Xpert MTB/RIF assay results, captured as part of the Myanmar Data Utilization Project, to characterize Mtb test positivity and rifampicin resistance by both age and sex, and to evaluate risk factors associated with rifampicin resistance. RESULTS: Overall, 70% of individuals diagnosed with TB were males. Test positivity was higher among males (47%) compared to females (39%). The highest positivity by age occurred among individuals aged 16-20, with test positivity for females (65%) higher than for males (57%). Although a greater absolute number of males were rifampicin resistant, a greater proportion of females (11.4%) were rifampicin resistant as compared to males (9.3%). In the multivariate model, history of previous treatment, age less than 30, testing in the Yangon region, and female sex were significantly positively associated with rifampicin resistance after adjusting for HIV status and year test was performed. CONCLUSIONS: Our results indicate that young adults were more likely to test positive for TB and be identified as rifampicin resistant compared to older adults.


Subject(s)
Antibiotics, Antitubercular , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Tuberculosis , Aged , Antibiotics, Antitubercular/pharmacology , Antibiotics, Antitubercular/therapeutic use , Drug Resistance, Bacterial/drug effects , Female , Humans , Male , Myanmar/epidemiology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Sensitivity and Specificity , Sex Distribution , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Pulmonary/drug therapy , Young Adult
2.
Ecol Evol ; 9(9): 5158-5171, 2019 May.
Article in English | MEDLINE | ID: mdl-31110669

ABSTRACT

Heterothermic mammals can use torpor, a state of metabolic suppression, to conserve energy during times of limited food and poor environmental conditions. Females may use torpor throughout gestation and lactation; however, there are associated physiological and ecological costs with potential fitness consequences. Previous studies have controlled for, but not quantified the impact of interindividual variation on torpor patterns and understanding this may provide insight on why certain thermoregulatory responses are employed. The objective of this study was to identify and quantitatively characterize the intrinsic variables and weather conditions that best explain variation in torpor patterns among individual female little brown bats, Myotis lucifugus. We used temperature-sensitive radio-transmitters affixed to females to measure skin temperature patterns of 35 individuals roosting in bat boxes in the spring and summer. We used Bayesian multi-model inference to rank a priori-selected models and variables based on their explanatory power. Reproductive condition and interindividual effects best explained torpor duration and depth, and weather best explained torpor frequency. Of the reproductive conditions, lactating females used torpor for the shortest durations and at shallower depths (i.e., smallest drop in minimum T sk), while females in early spring (i.e., not-obviously-pregnant) used torpor for the longest and deepest. Among individuals, the greatest difference in effects on duration occurred between pregnant individuals, suggesting interindividual variation within reproductive condition. Increases in precipitation and wind were associated with a higher probability of torpor use. Our results provide further support that multiple variables explain torpor patterns and highlight the importance of including individual effects when studying thermoregulatory patterns in heterothermic species. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.c04tj85.

SELECTION OF CITATIONS
SEARCH DETAIL
...