Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 120(5): 461-475, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38428029

ABSTRACT

Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.


Subject(s)
Aortic Valve Stenosis , Hypertrophy, Left Ventricular , Ventricular Remodeling , Animals , Humans , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/metabolism , Disease Models, Animal , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Species Specificity , Ventricular Function, Left , Ventricular Pressure
2.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37930007

ABSTRACT

Large animal models of heart failure play an essential role in the development of new therapeutic interventions due to their size and physiological similarities to humans. Efforts have been dedicated to creating a model of pressure-overload induced heart failure, and ascending aortic banding while still supra-coronary and not a perfect mimic of aortic stenosis in humans, closely resembling the human condition. The purpose of this study is to demonstrate a minimally invasive approach to induce left ventricular pressure overload by placing an aortic band, precisely calibrated with percutaneously introduced high-fidelity pressure sensors. This method represents a refinement of the surgical procedure (3Rs), resulting in homogenous trans-stenotic gradients and reduced intragroup variability. Additionally, it enables swift and uneventful animal recovery, leading to minimal mortality rates. Throughout the study, animals were followed for up to 2 months after surgery, employing transthoracic echocardiography and pressure-volume loop analysis. However, longer follow-up periods can be achieved if desired. This large animal model proves valuable for testing new drugs, particularly those targeting hypertrophy and the structural and functional alterations associated with left ventricular pressure overload.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Humans , Animals , Swine , Heart , Heart Failure/etiology , Aortic Valve Stenosis/surgery , Echocardiography , Aorta/surgery , Hypertrophy, Left Ventricular , Disease Models, Animal
3.
Front Cardiovasc Med ; 10: 1228160, 2023.
Article in English | MEDLINE | ID: mdl-38274312

ABSTRACT

Ischemic heart disease (IHD) is one of the world's foremost killers, accounting for 16% of all deaths worldwide. IHD is the main cause of heart failure (HF), as it leads to pathological changes in the heart, improper pumping function and eventual death. Therapeutic interventions usually follow a systemic general strategy for all heart failure subtypes due to the lack of a deep understanding of the disease mechanisms. Hence, HF and IHD therapeutics need groundbreaking concepts to guide the development of a new therapeutics class that tackles the disease at a molecular level. The TRAIN-HEART consortium, a Marie Sklodowska-Curie Actions Innovative Training Network (MSCA-ITN) funded by the European Commission, was established with the goal of filling that gap and developing RNA-based cardiovascular therapeutics. Created in the context of the Horizon 2020 research and innovation program, TRAIN-HEART comprises three key work packages (WPs) focusing on the pathogenesis of heart disease (WP1), the therapeutic potential of RNA therapeutics (WP2), and the development of new efficient delivery systems (WP3). Fifteen international early stage researchers (ESRs) from multiple complementary scientific disciplines were recruited to collaborate with a network of PIs from nine academic and eight non-academic partners in various disciplines to fully harness their collective potential for the betterment of HF treatment. This article provides an overview of the benefits of being part of an MSCA-ITN, with its different training and networking opportunities, maximizing ESRs' potential and broadening collaborative research possibilities. Finally, it describes what was like to do a PhD during the COVID-19 pandemic, with all the uncertainty and concern attached to it. Luckily, TRAIN-HEART stood out as a proactive network, finding new initiatives and alternatives to promote scientific and personal development. By bringing together leading academic teams, (biotech) companies, and highly motivated researchers, TRAIN-HEART is expanding scientific horizons and accelerating future development of effective RNA-based therapies to treat IHD.

SELECTION OF CITATIONS
SEARCH DETAIL
...