Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(19): E4358-E4367, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686076

ABSTRACT

Trigonelline (TG; N-methylnicotinate) is a ubiquitous osmolyte. Although it is known that it can be degraded, the enzymes and metabolites have not been described so far. In this work, we challenged the laboratory model soil-borne, gram-negative bacterium Acinetobacter baylyi ADP1 (ADP1) for its ability to grow on TG and we identified a cluster of catabolic, transporter, and regulatory genes. We dissected the pathway to the level of enzymes and metabolites, and proceeded to in vitro reconstruction of the complete pathway by six purified proteins. The four enzymatic steps that lead from TG to methylamine and succinate are described, and the structures of previously undescribed metabolites are provided. Unlike many aromatic compounds that undergo hydroxylation prior to ring cleavage, the first step of TG catabolism proceeds through direct cleavage of the C5-C6 bound, catalyzed by a flavin-dependent, two-component oxygenase, which yields (Z)-2-((N-methylformamido)methylene)-5-hydroxy-butyrolactone (MFMB). MFMB is then oxidized into (E)-2-((N-methylformamido) methylene) succinate (MFMS), which is split up by a hydrolase into carbon dioxide, methylamine, formic acid, and succinate semialdehyde (SSA). SSA eventually fuels up the TCA by means of an SSA dehydrogenase, assisted by a Conserved Hypothetical Protein. The cluster is conserved across marine, soil, and plant-associated bacteria. This emphasizes the role of TG as a ubiquitous nutrient for which an efficient microbial catabolic toolbox is available.


Subject(s)
Acinetobacter , Alkaloids/metabolism , Genome, Bacterial , Molecular Sequence Annotation , Multigene Family , Acinetobacter/enzymology , Acinetobacter/genetics , Chromatography, Liquid , Mass Spectrometry
3.
Nat Chem Biol ; 13(8): 858-866, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28581482

ABSTRACT

Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.


Subject(s)
Acetyltransferases/metabolism , Evolution, Molecular , Methionine/biosynthesis , Acinetobacter/enzymology , Escherichia coli/enzymology
4.
J Biol Chem ; 283(23): 15638-46, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-18364348

ABSTRACT

Although the D-glucarate degradation pathway is well characterized in Escherichia coli, genetic and biochemical information concerning the alternative pathway proposed in Pseudomonas species and Bacillus subtilis remains incomplete. Acinetobacter baylyi ADP1 is a Gram-negative soil bacterium possessing the alternative pathway and able to grow using D-glucarate as the only carbon source. Based on the annotation of its sequenced genome (1), we have constructed a complete collection of singlegene deletion mutants (2). High throughput profiling for growth on a minimal medium containing D-glucarate as the only carbon source for approximately 2450 mutants led to the identification of the genes involved in D-glucarate degradation. Protein purification after recombinant production in E. coli allowed us to reconstitute the enzymatic pathway in vitro. We describe here the kinetic characterization of D-glucarate dehydratase, d-5-keto-4-deoxyglucarate dehydratase, and of cooperative alpha-ketoglutarate semialdehyde dehydrogenase. Transcription and expression analyses of the genes involved in D-glucarate metabolism within a single organism made it possible to access information regarding the regulation of this pathway for the first time.


Subject(s)
Acinetobacter/enzymology , Bacterial Proteins/biosynthesis , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Glutarates/metabolism , Hydro-Lyases/biosynthesis , Acinetobacter/genetics , Bacterial Proteins/genetics , Gene Deletion , Genome, Bacterial/physiology , Hydro-Lyases/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transcription, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...