Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 255: 119179, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38768882

ABSTRACT

Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts. Utilizing two distinct assays, OPDTT and OPDCFH, we measured the OP of PM samples, while also examining the associations between PM mass, OP, and black carbon (BC) concentrations with hospital visits for acute respiratory infections (ARI) and pneumonia over a range of exposure lags (0-2 weeks) using a Poisson regression model adjusted for meteorological conditions. The analysis also leveraged Positive Matrix Factorization (PMF) to link these health outcomes to specific PM sources, building on a prior source apportionment study utilizing the same dataset. Our findings highlight anthropogenic combustion, particularly from traffic and biomass burning, as the primary contributors to OP in these urban sites. Significant correlations were observed between both OPDTT and PM2.5 concentration exposure and ARI hospital visits, alongside a notable association with pneumonia cases and OPDTT levels. Furthermore, PMF analysis demonstrated a clear link between traffic-related pollution and increased hospital admissions for respiratory issues, affirming the health impact of these sources. These results underscore the potential of OPDTT as a valuable metric for assessing the health risks associated with acute PM exposure, showcasing its broader application in environmental health studies.


Subject(s)
Air Pollutants , Altitude , Cities , Particulate Matter , Particulate Matter/analysis , Bolivia/epidemiology , Humans , Air Pollutants/analysis , Adult , Respiratory Tract Infections/epidemiology , Oxidation-Reduction , Male , Middle Aged , Female , Pneumonia/epidemiology , Pneumonia/chemically induced , Young Adult , Adolescent , Air Pollution/analysis , Air Pollution/adverse effects , Child , Environmental Monitoring/methods , Child, Preschool
2.
Chemosphere ; 352: 141242, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280648

ABSTRACT

Biomass burning is a significant source of particulate matter (PM) in ambient air and its accurate source apportionment is a major concern for air quality. The discrimination between residential wood heating (RWH) and garden green waste burning (GWB) particulate matter (PM) is rarely achieved. The objective of this work was to evaluate the potential of non-targeted screening (NTS) analyses using HRMS (high resolution mass spectrometry) data to reveal discriminating potential molecular markers of both sources. Two residential wood combustion appliances (wood log stove and fireplace) were tested under different output conditions and wood moisture content. GWB experiments were carried out using two burning materials (fallen leaves and hedge trimming). PM samples were characterized using NTS approaches with both LC- and GC-HRMS (liquid and gas chromatography-HRMS). The analytical procedures were optimized to detect as many species as possible. Chemical fingerprints obtained were compared combining several multivariate statistical analyses (PCA, HCA and PLS-DA). Results showed a strong impact of the fuel nature and the combustion quality on the chemical fingerprints. 31 and 4 possible markers were discovered as characteristic of GWB and RWH, respectively. Complementary work was attempted to identify potential molecular formulas of the different potential marker candidates. The combination of HRMS NTS chemical characterization with multivariate statistical analyses shows promise for uncovering organic aerosol fingerprinting and discovering potential PM source markers.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Gardens , Wood/chemistry , Heating , Gas Chromatography-Mass Spectrometry , Particulate Matter/analysis , Environmental Monitoring
3.
Sci Total Environ ; 798: 149367, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34375266

ABSTRACT

This work provides an evaluation of the emission factors (EFs) of typical garden waste burning (fallen leaves and hedge trimming) in terms of particulate matter (PM), elemental and organic carbon (EC-OC) together with a detailed chemical characterization of 88 particle-bound organic species including polycyclic aromatic hydrocarbons (PAHs), levoglucosan and its isomers, lignin breakdown products (methoxyphenols), cholesterol, alkanes, polyols and sugars. Furthermore, wood-log based burning experiments have been performed to highlight key indicators or chemical patterns of both, green waste and wood burning (residential heating) sources, that may be used for PM source apportionment purposes. Two residential log wood combustion appliances, wood stove (RWS) and fireplace, under different output conditions (nominal and reduced) and wood log moisture content (mix of beech, oak and hornbeam), have been tested. Open wood burning experiments using wood logs were also performed. Green waste burning EFs obtained were comparable to the available literature data for open-air biomass burning. For PM and for most of the organic species studied, they were about 2 to 30 times higher than those observed for wood log combustion experiments. Though, poor performance wood combustions (open-air wood log burning, fireplace and RWS in reduced output) showed comparable EFs for levoglucosan and its isomers, methoxyphenols, polyols, PAHs and sugars. Toxic PAH equivalent benzo[a]pyrene EFs were even 3-10 times higher for the fireplace and open-air wood log burning. These results highlighted the impact of the nature of the fuel burnt and the combustion performances on the emissions. Different chemical fingerprints between both biomass burning sources were highlighted with notably a predominance of odd high-molecular weight n-alkanes (higher carbon preference index, CPI), lower levoglucosan/mannosan ratio and lower sinapylaldehyde abundance for green waste burning. However, the use of such indicators seems limited, especially if applied alone, for a clear discrimination of both sources in ambient air.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Coal/analysis , Gardens , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Wood/chemistry
4.
Waste Manag ; 102: 782-794, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31812093

ABSTRACT

Viticultural waste has been widely demonstrated to contain high-added value compounds named the stilbenes. Among them, trans-resveratrol (Rsv) and trans-ε-viniferin (Vf) are the most abundant in particular in grape canes. Various emerging methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) or pressurized solvent extraction (PSE) have been studied to recover Rsv and Vf from grape canes in order to enhance their extraction. This paper gives a critical overview of the techniques used to this end, integrating conventional and non-conventional methods investigated in the literature as well as those used in industrial processes. It finally highlights that the unconventional technics are usually less time-consuming than conventional extraction ones but further investigations for the discussed compounds and biomass are needed to optimize and understand the influence of the individual parameters of each extraction process.


Subject(s)
Polyphenols , Vitis , Microwaves , Resveratrol , Wood
5.
Sci Total Environ ; 624: 1598-1611, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29275933

ABSTRACT

PM10 source apportionment was performed by positive matrix factorization (PMF) using specific primary and secondary organic molecular markers on samples collected over a one year period (2013) at an urban station in Grenoble (France). The results provided a 9-factor optimum solution, including sources rarely apportioned in the literature, such as two types of primary biogenic organic aerosols (fungal spores and plant debris), as well as specific biogenic and anthropogenic secondary organic aerosols (SOA). These sources were identified thanks to the use of key organic markers, namely, polyols, odd number higher alkanes, and several SOA markers related to the oxidation of isoprene, α-pinene, toluene and polycyclic aromatic hydrocarbons (PAHs). Primary and secondary biogenic contributions together accounted for at least 68% of the total organic carbon (OC) in the summer, while anthropogenic primary and secondary sources represented at least 71% of OC during wintertime. A very significant contribution of anthropogenic SOA was estimated in the winter during an intense PM pollution event (PM10>50µgm-3 for several days; 18% of PM10 and 42% of OC). Specific meteorological conditions with a stagnation of pollutants over 10days and possibly Fenton-like chemistry and self-amplification cycle of SOA formation could explain such high anthropogenic SOA concentrations during this period. Finally, PMF outputs were also used to investigate the origins of humic-like substances (HuLiS), which represented 16% of OC on an annual average basis. The results indicated that HuLiS were mainly associated with biomass burning (22%), secondary inorganic (22%), mineral dust (15%) and biogenic SOA (14%) factors. This study is probably the first to state that HuLiS are significantly associated with mineral dust.

6.
Anal Bioanal Chem ; 396(2): 857-64, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19902189

ABSTRACT

A new ionic liquid 1-octyl-3,5-dimethylpyridinium iodide ([O35LUT](+)[I](-)) was synthesized and utilized as coating for an ozone denuder device based on a high-volume aerosol sampler (30 m(3) h(-1)). Particle transmission of the denuder was studied, and over 99% of particles ranging from 10 to 2,500 nm were transmitted. The device, containing 4.66 g of ionic liquid, was used outdoors, under dry and damp atmospheric conditions. In order to expose the device to an average concentration of 120 ppbv (240 microg m(-3)) of ozone in air, an additional production of ozone was directly injected into the denuder. Under these conditions, over 97% of ozone was removed for approximately 120 h (5 days). Therefore, iodide-based ionic liquids can be used as a new alternative to conventional denuder coatings in order to reduce artifacts occurring during sampling of particulate matter. Future applications are not limited to ozone removal for specific aerosol sampling methods.

7.
Environ Sci Technol ; 39(15): 5729-35, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16124309

ABSTRACT

As a means to study the fate of polycyclic aromatic hydrocarbons (PAHs) in freshwater sediments, pyrene mineralization was examined in microcosms spiked with [14C]pyrene. Some microcosms were planted with reeds (Phragmites australis) and/or inoculated with a pyrene-degrading strain, Mycobacterium sp. 6PY1. Mineralization rates recorded over a 61 d period showed that reeds promoted a significant enhancement of pyrene degradation, which possibly resulted from a root-mediated increase of oxygen diffusion into the sediment layer, as indicated by in situ redox measurements. In inoculated microcosms, mineralization reached a higher level in the absence (8.8%) than in the presence of plants (4.4%). Mineralization activity was accompanied by the release of water-soluble pyrene oxidation products, the most abundant of which was identified as 4,5-diphenanthroic acid. Pyrene was recovered from plant tissues, including stems and leaves, at concentrations ranging between 40 and 240 microg/g of dry mass. Plants also accumulated labeled oxidation products likely derived from microbial degradation. Pyrene-degrading strains were 35-70-fold more abundant in inoculated than in noninoculated microcosms. Most of the pyrene-degrading isolates selected from the indigenous microflora were identified as Mycobacterium austroafricanum strains. Taken together, the results of this study show that plants or PAH-degrading bacteria enhance pollutant removal, but their effects are not necessarily cumulative.


Subject(s)
Fresh Water/chemistry , Geologic Sediments/chemistry , Mycobacterium/growth & development , Poaceae/growth & development , Pyrenes/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Minerals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...