Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(9): e202315872, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38093613

ABSTRACT

Asymmetric hydrogenation (AH) of tetrasubstituted olefins generating two stereocenters is still an open topic. There are only a few reports on the AH of tetrasubstituted olefins with conjugated functional groups, while this process can create useful intermediates for the subsequent elaboration of relevant end products. Most of the tetrasubstituted olefins successfully submitted to AH belong to a small number of functional classes; remarkably, the AH of tetrasubstituted acyclic enones still represents an unsolved challenge. Herein, we disclose a class of air-stable Ir-P,N catalysts, prepared in three steps from commercially available amino alcohols, that can hydrogenate, in minutes, a wide range of electronically and sterically diverse acyclic tetrasubstituted enones (including exocyclic ones) with high yields and high enantioselectivities. The factors responsible for the excellent selectivities were elucidated by combining deuterogenation experiments and theoretical calculations. The calculations indicated that the reduction follows an IrI /IrIII mechanism, in which enantioselectivity is controlled in the first migratory insertion of the hydride to the most electrophilic olefinic Cß and the formation of the hydrogenated product via reductive elimination takes place prior to the coordination of dihydrogen and the subsequent oxidative addition. The potential of the new catalytic systems is demonstrated by the derivatization of hydrogenation products.

2.
Chem Sci ; 14(47): 13722-13733, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38075650

ABSTRACT

Water oxidation is a bottleneck reaction for the establishment of solar-to-fuel energy conversion systems. Earth-abundant metal-based polyoxometalates are promising heterogeneous water oxidation catalysts that can operate in a wide pH range. However, detailed structure-reactivity relationships are not yet comprehensively understood, hampering the design and synthesis of more effective polyoxometalate-based oxidation catalysts. Here we report the synthesis of an ordered, mixed-metal cobalt-iron Weakley archetype [CoII2(H2O)2FeIII2(CoIIW9O34)2]14- (Co2Fe2-WS), which unexpectedly highlights the strong influence of the central, coordinatively saturated metal ions on the catalytic water oxidation characteristics. The resulting species exhibits catalytic turnover frequencies which are up to 4× higher than those of the corresponding archetype tetracobalt-oxo species [CoII2(H2O)2CoII2(PW9O34)2]10- (Co4-WS). It is further striking that the system becomes catalytically inactive when one of the central positions is occupied by a WVI ion as demonstrated by [CoII2(H2O)2CoIIWVI(CoIIW9O34)2]12- (Co3W-WS). Importantly, this study demonstrates that coordinatively saturated metal ions in this central position, which at first glance appear insignificant, do not solely have a structural role but also impart a distinctive structural influence on the reactivity of the polyoxometalate. These results provide unique insights into the structure-reactivity relationships of polyoxometalates with improved catalytic performance characteristics.

3.
Inorg Chem ; 62(33): 13184-13194, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37440284

ABSTRACT

The first PtIV-containing discrete polyoxoplatinate(II) [PtIVPtII6O6(AsO2(CH3)2)6]2- (Pt7) and polyoxopalladate(II) [PtIVPdII6O6(AsO2(CH3)2)6]2- (PtPd6) have been prepared and characterized in the solid state, in solution, and in the gas phase. The molecular structures of the noble metal-oxo clusters Pt7 and PtPd6 comprise a central, octahedral PtIVO6 hetero group surrounded by six square-planar MO4 (M = PtII, PdII) units, which are capped by six dimethylarsinate ligands. The polyanions were prepared under simple one-pot aqueous solution conditions by reacting H2Pt(OH)6 with either K2PtCl4 or Pd(NO3)2 in sodium dimethylarsinate buffer (pH 7) at 80 °C. Catalytic studies were performed on Pt7 supported on SBA15-apts for o-xylene hydrogenation at 300 °C and 90 bar H2 pressure and indicated excellent activity and recyclability with low activation temperature.

4.
JACS Au ; 3(6): 1742-1754, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37388697

ABSTRACT

A new generation of chiral gold(I) catalysts based on variations of complexes with JohnPhos-type ligands with a remote C2-symmetric 2,5-diarylpyrrolidine have been synthesized with different substitutions at the top and bottom aryl rings: from replacing the phosphine by a N-heterocyclic carbene (NHC) to increasing the steric hindrance with bis- or tris-biphenylphosphine scaffolds, or by directly attaching the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine. The new chiral gold(I) catalysts have been tested in the intramolecular [4+2] cycloaddition of arylalkynes with alkenes and in the atroposelective synthesis of 2-arylindoles. Interestingly, simpler catalysts with the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine led to the formation of opposite enantiomers. The chiral binding pockets of the new catalysts have been analyzed by DFT calculations. As revealed by non-covalent interaction plots, attractive non-covalent interactions between substrates and catalysts direct specific enantioselective folding. Furthermore, we have introduced the open-source tool NEST, specifically designed to account for steric effects in cylindrical-shaped complexes, which allows predicting experimental enantioselectivities in our systems.

5.
Dalton Trans ; 52(13): 4044-4057, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36880418

ABSTRACT

We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.

6.
ACS Catal ; 13(5): 3020-3035, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36910869

ABSTRACT

The Ir-MaxPHOX-type catalysts demonstrated high catalytic performance in the hydrogenation of a wide range of nonchelating olefins with different geometries, substitution patterns, and degrees of functionalization. These air-stable and readily available catalysts have been successfully applied in the asymmetric hydrogenation of di-, tri-, and tetrasubstituted olefins (ee's up to 99%). The combination of theoretical calculations and deuterium labeling experiments led to the uncovering of the factors responsible for the enantioselectivity observed in the reaction, allowing the rationalization of the most suitable substrates for these Ir-catalysts.

7.
J Org Chem ; 87(1): 363-372, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34935370

ABSTRACT

Bimolecular nucleophilic substitution is one of the fundamental reactions in organic chemistry, yet there is still knowledge to be gained on the role of the nucleophile and the substrate. A statistical treatment of over 600 density functional theory (DFT)-computed barriers for bimolecular nucleophilic substitution at methyl derivatives (SN2@C) leads to the identification of numerical descriptors that best represent the entering and leaving ability of 26 different nucleophiles. The treatment is based on singular value decomposition (SVD) of a matrix of computed energy barriers. The current work represents the extension to a problem of reactivity of the hidden descriptor methodology that we had previously developed for the thermodynamic problem of bond dissociation energies in transition-metal complexes. The analysis of the results shows that a single descriptor is sufficient. This hidden descriptor has different values for nucleophilic and leaving abilities and, contrary to expectation, does not correlate especially well with either frontier molecular orbital descriptors or solvation descriptors. In contrast, it correlates with other thermodynamic and geometric parameters. This statistical procedure can be in principle extended to additional chemical fragments and other reactions.

8.
Chem Sci ; 12(25): 8755-8766, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34257875

ABSTRACT

Cobalt polyoxometalates (Co-POMs) have emerged as promising water oxidation catalysts (WOCs), with the added advantage of their molecular nature despite being metal oxide fragments. In comparison with metal oxides, that do not offer well-defined active surfaces, POMs have a controlled, discrete structure that allows for precise correlations between experiment and computational analyses. Thus, beyond highly active WOCs, POMs are also model systems to gain deeper mechanistic understanding on the oxygen evolution reaction (OER). The tetracobalt Weakley sandwich [CoII 4(H2O)2(B-α-PW9O34)2]10- (Co4-WS) has been one of the most extensively studied. We have compared its activity with that of the iron analog [FeIII 4(H2O)2(B-α-PW9O34)2]6- (Fe4-WS) looking for the electronic effects determining their activity. Furthermore, the effect of POM nuclearity was also investigated by comparison with the iron- and cobalt-monosubstituted Keggin clusters. Electrocatalytic experiments employing solid state electrodes containing the POMs and the corresponding computational calculations demonstrate that CoII-POMs display better WOC activity than the FeIII derivatives. Moreover, the activity of POMs is less influenced by their nuclearity, thus Weakley sandwich moieties show slightly improved WOC characteristics than Keggin clusters. In good agreement with the experimental data, computational methods, including pK a values, confirm that the resting state for Fe-POMs in neutral media corresponds to the S1 (FeIII-OH) species. Overall, the proposed reaction mechanism for Fe4-WS is analogous to that found for Co4-WS, despite their electronic differences. The potential limiting step is a proton-coupled electron transfer event yielding the active S2 (FeIV[double bond, length as m-dash]O) species, which receives a water nucleophilic attack to form the O-O bond. The latter has activation energies slightly higher than those computed for the Co-POMs, in good agreement with experimental observations. These results provide new insights for the accurate understanding of the structure-reactivity relationships of polyoxometalates in particular, and or metal oxides in general, which are of utmost importance for the development of new bottom-up synthetic approaches to design efficient, robust and non-expensive earth-abundant water oxidation catalysts.

9.
J Am Chem Soc ; 143(12): 4837-4843, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33733762

ABSTRACT

Many transition-metal complexes MLn decompose diazo compounds N2═CR1R2 generating metal-carbenes LnM═CR1R2 which transfer the carbene group to other substrates, constituting an important tool in organic synthesis. All previous reports have shown that the CR1R2 fragment at the metal-carbene remains intact from the parent diazo compound. Herein we report the detection and isolation of a monosubstituted copper carbene where the CR1R2 ligand has undergone a modification from the initial diazo reagent. When TpMsCu(THF) (TpMs = hydrotris(3-mesityl)pyrazolylborate ligand) was reacted with N,N-diethyl diazoacetamide [N2═C(H)(CONEt2)], the stable copper carbene TpMsCu═C(H)(NEt2) was isolated, resulting from a decarbonylation process, with carbon monoxide being trapped as TpMsCu(CO). The simultaneous observation of products derived from the intramolecular carbene insertion reaction into C-H bonds demonstrates that the expected TpMsCu═C(H)(CONEt2) complex is also formed. Experimental data, DFT calculations, and microkinetic models allow us to propose that the latter undergoes CO loss en route to the former.

10.
Inorg Chem ; 60(2): 807-815, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33411534

ABSTRACT

The mechanism responsible for peptide bond hydrolysis by Co(III) and Cu(II) complexes with (oxa)cyclen ligands has been revisited by means of computational tools. We propose that the mechanism starts by substrate coordination and an outer-sphere attack on the amide C atom of a solvent water molecule assisted by the metal hydroxo moiety as a general base, which occurs through six-membered ring transition states. This new mechanism represents a more likely scenario than the previously proposed mechanisms that involved an inner-sphere nucleophilic attack through more strained four-membered rings transition states. The corresponding computed overall free-energy barrier of 25.2 kcal mol-1 for hydrolysis of the peptide bond in Phe-Ala by a cobalt(III) oxacyclen catalyst (1) is consistent with the experimental values obtained from rate constants. Also, we assessed the influence of the nature of the ligand throughout a systematic replacement of N by O atoms in the (oxa)cyclen ligand. Increasing the number of coordinating O atoms accelerates the reaction by increasing the Lewis acidity of the metal ion. On the other hand, the higher reactivity observed for the copper(II) oxacyclen catalyst with respect to the analogous Co(III) complex can be attributed to the larger Brönsted basicity of the copper(II) hydroxo ligand. Ultimately, the detailed understanding of the ligand and metal nature effects allowed us to identify the double role of the metal hydroxo complexes as Lewis acids and Brönsted bases and to rationalize the observed reactivity trends.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Cyclams/chemistry , Peptides/chemistry , Catalysis , Density Functional Theory , Hydrolysis , Ligands , Molecular Conformation , Thermodynamics
11.
Chemistry ; 26(67): 15738-15745, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33155306

ABSTRACT

The nature of cyclopropyl gold(I) carbene-type intermediates has been reexamined as part of a mechanistic study on the formation of cis- or trans-fused bicyclo[5.1.0]octanes in a gold(I)-catalyzed cascade reaction. Benchmark of DFT methods together with QTAIM theory and NBO analysis confirms the formation of distinct intermediates with carbenic or carbocationic structures in the cycloisomerizations of enynes.

12.
J Am Chem Soc ; 142(30): 13062-13071, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32590895

ABSTRACT

Under silver catalysis conditions, using [Tp*,BrAg]2 as the catalyst precursor, allenes react with PhI═NTs in the first example of efficient metal-mediated intermolecular nitrene transfer to such substrates. The nature of the substituent at the allene seems crucial for the reaction outcome since arylallenes are converted into azetidine derivatives, whereas methylene aziridines are the products resulting from alkylallenes. Mechanistic studies allow proposing that azetidines are formed through unstable cyclopropylimine intermediates, which further incorporate a second nitrene group, both processes being silver-mediated. Methylene aziridines from alkylallenes derive from catalytic nitrene addition to the allene double bonds. Both routes have resulted to be productive for further synthetic transformations affording aminocyclopropanes.

13.
Org Lett ; 22(8): 2873-2877, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32101443

ABSTRACT

DFT calculations and microkinetic simulations are applied to the reproduction of previously reported experimental results on the evolution of product concentration versus time in the condensation reaction of n-butylamine and benzaldehyde. The mechanism is complicated by the role played by water impurities as proton shuttles. Several functionals and other approaches are tested, yet good agreement is only achieved upon the usage of an adjustment consisting of a directed biasing of the computed DFT free energies.

14.
Angew Chem Int Ed Engl ; 59(8): 3112-3116, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31826300

ABSTRACT

A first quantitative model for calculating the nucleophilicity of alkanes is described. A statistical treatment was applied to the analysis of the reactivity of 29 different alkane C-H bonds towards in situ generated metal carbene electrophiles. The correlation of the recently reported experimental reactivity with two different sets of descriptors comprising a total of 86 parameters was studied, resulting in the quantitative descriptor-based alkane nucleophilicity (QDEAN) model. This model consists of an equation with only six structural/topological descriptors, and reproduces the relative reactivity of the alkane C-H bonds. This reactivity can be calculated from parameters emerging from the schematic drawing of the alkane and a simple set of sums.

15.
Dalton Trans ; 48(43): 16242-16248, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31599918

ABSTRACT

The reaction between bromobenzene and palladium(0) complexes leading to a palladium(ii) complex containing bromide and phenyl ligands is studied computationally with DFT methods. Three different mechanisms are considered: concerted, nucleophilic substitution and radical. A systematic analysis is carried out on the effect on each of these mechanisms of a number of variables: the identity of the phosphine (PF3, PH3, PMe3 or PPh3), the nature of the solvent (vacuum, tetrahydrofuran, dimethylformamide or water) and the number of phosphine ligands (mono- or bis-phosphine). The concerted and nucleophilic substitution mechanisms are competitive in many cases, the identity of the preferred one depending on a combination of factors. Additional calculations with bromomethane, bromoethylene and bromoethane are carried out in selected cases for further clarification.

16.
Inorg Chem ; 57(23): 14660-14670, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30444606

ABSTRACT

A statistical treatment of the DFT-computed heterolytic bond dissociation energies (BDE) between a diverse variety of metal fragments and ligands leads to the identification of five hidden descriptors that best characterize the bonding ability per moiety, and of a simple mathematical formula able to obtain from these hidden descriptors a BDE estimation within a few kcal/mol from the DFT value. A simple extension of this treatment beyond the original set of metal fragments and ligands is also presented. The first two hidden descriptors can be associated with the well-known concepts of σ-donation and π-effects, with the next two associated with cis influence and degree of covalency. The procedure can be easily extended to additional ligands and metal fragments, and it opens the way to an improved understanding of fundamental concepts of chemical bonding.

17.
Angew Chem Int Ed Engl ; 57(42): 13848-13852, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30015368

ABSTRACT

We report quantitative measurements of the relative reactivities of a series of C-H bonds of gaseous or liquid Cn H2n+2 alkanes (n=1-8, 29 different C-H bonds) towards in situ generated electrophiles (copper, silver, and rhodium carbenes), with methane as the reference. This strategy surpasses the drawback of previous model reactions of alkanes with strong electrophiles suffering from C-C cleavage processes, which precluded direct comparison of the relative reactivities of alkane C-H bonds.

18.
J Phys Chem A ; 122(5): 1392-1399, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29319307

ABSTRACT

The result of the application of different approaches based on the ideal gas/rigid rotor/harmonic oscillator (IGRRHO) model, commonly used in popular software packages, for the calculation of free energies in solution is compared with that of ab initio molecular dynamics for a process involving ligand exchange in palladium complexes. The IGRRHO-based approaches considered differ in most cases in the extent to which the rotational and translational contributions are included in the correction. Our study supports the use the free energy values directly obtained from dispersion-corrected DFT functionals without any correction or with minor corrections at most.

19.
Chem Asian J ; 11(3): 411-6, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26663384

ABSTRACT

The mechanism of the organocatalyzed [4+2] cycloaddition of ο-hydroxybenzaldimines to 2,3-dihydro-2 H-furan (DHF) to form furanobenzopyrans has been investigated by using computational methods. Experiments have shown that this reaction produces different products (trans-fused or cis-fused) if different phosphoric acid derivatives are applied. Our study shows the reaction proceeds through a mechanism in which the imine re-arranges into an amine, which subsequently reacts with DHF with mediation from the catalyst. The rate-limiting step in this process is the formation of two new bonds, which is also the key step in determining the reaction selectivity. The selectivity is controlled by a balance of noncovalent interactions between the catalyst and the substrates. The discriminating factor between the two catalysts is the presence of a triflyl substituent on one of catalysts, which constraints the relative orientations of the substrates.

20.
Chemistry ; 20(12): 3463-74, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24616053

ABSTRACT

Well-defined copper(I) complexes of composition [Tpm*(,Br) Cu(NCMe)]BF4 (Tpm*(,Br) =tris(3,5-dimethyl-4-bromo-pyrazolyl)methane) or [Tpa(*) Cu]PF6 (Tpa(*) =tris(3,5-dimethyl-pyrazolylmethyl)amine) catalyze the formation of 2,5-disubstituted oxazoles from carbonyl azides and terminal alkynes in a direct manner. This process represents a novel procedure for the synthesis of this valuable heterocycle from readily available starting materials, leading exclusively to the 2,5-isomer, attesting to a completely regioselective transformation. Experimental evidence and computational studies have allowed the proposal of a reaction mechanism based on the initial formation of a copper-acyl nitrene species, in contrast to the well-known mechanism for the copper-catalyzed alkyne and azide cycloaddition reactions (CuAAC) that is triggered by the formation of a copper-acetylide complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...