Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 81(7): 1788-1801, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33483371

ABSTRACT

CD1d-restricted invariant natural killer T cells (iNKT cells) mediate strong antitumor immunity when stimulated by glycolipid agonists. However, attempts to develop effective iNKT cell agonists for clinical applications have been thwarted by potential problems with dose-limiting toxicity and by activation-induced iNKT cell anergy, which limits the efficacy of repeated administration. To overcome these issues, we developed a unique bispecific T-cell engager (BiTE) based on covalent conjugates of soluble CD1d with photoreactive analogues of the glycolipid α-galactosylceramide. Here we characterize the in vivo activities of iNKT cell-specific BiTEs and assess their efficacy for cancer immunotherapy in mouse models using transplantable colorectal cancer or melanoma tumor lines engineered to express human Her2 as a tumor-associated antigen. Systemic administration of conjugated BiTEs stimulated multiple iNKT cell effector functions including cytokine release, secondary activation of NK cells, and induction of dendritic cell maturation and also initiated epitope spreading for tumor-specific CD8+ cytolytic T-cell responses. The antitumor effects of iNKT-cell activation with conjugated BiTEs were further enhanced by simultaneous checkpoint blockade with antibodies to CTLA-4, providing a potential approach for combination immunotherapy. Multiple injections of covalently stabilized iNKT cell-specific BiTEs activated iNKT cells without causing iNKT cell anergy or exhaustion, thus enabling repeated administration for effective and nontoxic cancer immunotherapy regimens. SIGNIFICANCE: Covalently stabilized conjugates that engage the antigen receptors of iNKT cells and target a tumor antigen activate potent antitumor immunity without induction of anergy or depletion of the responding iNKT cells.


Subject(s)
Antigens, CD1d/pharmacology , Clonal Anergy/drug effects , Galactosylceramides/pharmacology , Immunotherapy/methods , Natural Killer T-Cells/drug effects , Animals , Antigens, CD1d/chemistry , Antigens, CD1d/immunology , Clonal Anergy/immunology , Female , Galactosylceramides/chemistry , Humans , Immunoconjugates/pharmacology , Lymphocyte Activation/drug effects , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Tumor Cells, Cultured
2.
Mol Immunol ; 129: 114-120, 2021 01.
Article in English | MEDLINE | ID: mdl-33293098

ABSTRACT

Mucosal-associated invariant T cells (MAIT cells) represent a potential therapeutic target as they can tune or enhance immune responses. They recognise and become activated by antigens, presented by the monomorphic MHC-I related molecule, MR1. To assess the significance of MAIT cells in human diseases, a better understanding of the MAIT cell-MR1-antigen interaction is imperative. Easy access to MR1 ligands and MAIT cells activators can help achieve this. In this review, we summarise current literature that has identified the natural ligands and drug-like molecules that activate MAIT cells and provide insight into their key molecular interactions with MR1 and MAIT T cell receptors (TCRs). We focus on the progress made in synthesizing and isolating 5-amino-6-d-ribitylaminouracil (5-A-RU), a key precursor in the synthesis of the known natural ligands, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil(5-OP-RU) and 5-(2-oxoethylideneamino)-6-d-ribitylaminouracil (5-OE-RU), and also on the stabilisation and optimisation of the latter compounds.


Subject(s)
Mucosal-Associated Invariant T Cells/drug effects , Mucosal-Associated Invariant T Cells/immunology , Ribitol/analogs & derivatives , Uracil/analogs & derivatives , Animals , Histocompatibility Antigens Class I/immunology , Humans , Ligands , Receptors, Antigen, T-Cell/immunology , Ribitol/chemistry , Ribitol/immunology , Uracil/chemistry , Uracil/immunology
3.
Bioconjug Chem ; 29(9): 3161-3173, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30085659

ABSTRACT

Activation of invariant natural killer T lymphocytes (iNKT cells) by α-galactosylceramide (α-GC) elicits a range of pro-inflammatory or anti-inflammatory immune responses. We report the synthesis and characterization of a series of α-GC analogues with acyl chains of varying length and a terminal benzophenone. These bound efficiently to the glycolipid antigen presenting protein CD1d, and upon photoactivation formed stable CD1d-glycolipid covalent conjugates. Conjugates of benzophenone α-GCs with soluble or cell-bound CD1d proteins retained potent iNKT cell activating properties, with biologic effects that were modulated by acyl chain length and the resulting affinities of conjugates for iNKT cell antigen receptors. Analysis by mass spectrometry identified a unique covalent attachment site for the glycolipid ligands in the hydrophobic ligand binding pocket of CD1d. The creation of covalent conjugates of CD1d with α-GC provides a new tool for probing the biology of glycolipid antigen presentation, as well as opportunities for developing effective immunotherapeutics.


Subject(s)
Antigens, CD1d/immunology , Antigens/immunology , Glycolipids/immunology , Lymphocyte Activation/immunology , Natural Killer T-Cells/immunology , Antigen Presentation/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...