Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Learn Behav ; 48(1): 84-95, 2020 03.
Article in English | MEDLINE | ID: mdl-31916193

ABSTRACT

The differential specialization of each side of the brain facilitates the parallel processing of information and has been documented in a wide range of animals. Animals that are more lateralized as indicated by consistent preferential limb use are commonly reported to exhibit superior cognitive ability as well as other behavioural advantages. We assayed the lateralization of 135 young pheasants (Phasianus colchicus), indicated by their footedness in a spontaneous stepping task, and related this measure to individual performance in either 3 assays of visual or spatial learning and memory. We found no evidence that pronounced footedness enhances cognitive ability in any of the tasks. We also found no evidence that an intermediate footedness relates to better cognitive performance. This lack of relationship is surprising because previous work revealed that pheasants have a slight population bias towards right footedness, and when released into the wild, individuals with higher degrees of footedness were more likely to die. One explanation for why extreme lateralization is constrained was that it led to poorer cognitive performance, or that optimal cognitive performance was associated with some intermediate level of lateralization. This stabilizing selection could explain the pattern of moderate lateralization that is seen in most non-human species that have been studied. However, we found no evidence in this study to support this explanation.


Subject(s)
Galliformes , Spatial Navigation , Animals , Cognition , Color , Functional Laterality
2.
Sci Rep ; 8(1): 13791, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214056

ABSTRACT

Brain lateralization is considered adaptive because it leads to behavioral biases and specializations that bring fitness benefits. Across species, strongly lateralized individuals perform better in specific behaviors likely to improve survival. What constrains continued exaggerated lateralization? We measured survival of pheasants, finding that individuals with stronger bias in their footedness had shorter life expectancies compared to individuals with weak biases. Consequently, weak, or no footedness provided the highest fitness benefits. If, as suggested, footedness is indicative of more general brain lateralization, this could explain why continued brain lateralization is constrained even though it may improve performance in specific behaviors.


Subject(s)
Brain/physiology , Escape Reaction/physiology , Functional Laterality/physiology , Life Expectancy , Quail/physiology , Animals , Food Chain , Foot/physiology , Survival/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...