Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 347: 123661, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38417605

ABSTRACT

Metal and nutrient pollution, soil erosion, and alterations in climate and hydrology are prevalent issues that impact the water quality of riverine systems. However, integrated approaches to assess and isolate causes and paths of river water pollution are scarce, especially in the case of watersheds impacted by multiple hazardous activities. Therefore, a framework model for investigating the multiple sources of river water pollution was developed. The chosen study area was the Paraopeba River basin located in the Minas Gerais, Brazil. Besides multiple agriculture, industrial, and urban pollution sources, this region was profoundly affected by the rupture of the B1 tailings dam (in January 2019) at the Córrego do Feijão mine, resulting in the release of metal-rich waste. Considering this situation, thirty-nine physicochemical and hydromorphological parameters were examined in the Paraopeba River basin, in the 2019-2023 period. The analysis involved various statistical techniques, including bivariate and multivariate methods such as correlation analysis, principal component analysis, and clustering. The Paraopeba River was mainly impacted by metal contamination resulting from the dam collapse, whereas nutrient contamination, mainly from urban and industrial discharges, predominantly affected its tributaries. Additionally, the elevated concentrations of aluminum, iron, nitrate, and sulfate in both main river and tributaries can be attributed to diffuse and point source pollution. In terms of hydromorphology and soil type, the interaction between woody vegetation and erosion-resistant soils, especially latosols, contributes to the stability of riverbanks in the main river. Meanwhile, in the tributaries, the presence of neosols and sparse vegetation in urbanized areas promoted riverbank erosion potentially amplifying pollution. While the study was conducted in a particular watershed, the findings are based on a methodology that can be applied universally. Hence, the insights on surface water quality from this research can be a valuable resource for researchers studying watersheds with diverse pollution sources.


Subject(s)
Rivers , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Water Quality , Soil
2.
Article in English | MEDLINE | ID: mdl-31288396

ABSTRACT

The Sabor River basin is a large basin (3170 km2) located in the northeast of Portugal and used mostly for agroforestry. One problem this basin faces is a lack of water during the dry season, when there is a higher demand for water to irrigate crops. To solve this problem, the Portuguese government created a National Irrigation Program to finance new irrigation areas and improve existing ones. Consequently, it is necessary to evaluate the past and future water availability for agricultural and domestic consumption in the basin. This was done through the development of a hydrological and water allocation model. The Soil and Water Assessment Tool (SWAT) was used to model the hydrological processes that took place in the catchment between 1960 and 2008. The MIKE HYDRO Basin was used to simulate water allocation (irrigation and domestic consumption) in a historical view and under two scenarios. The historical view used the time period 1960-2008, and the two scenarios used the same time period but with an increase in the irrigated area. The first scenario simulated the irrigation of the total irrigable area that exists in the basin. The second scenario simulated a 29% increase in the olive grove area and a 24% decrease in the resident population, according to the projection for 2060. The results show that, in the historical view, the average annual water demand deficit was 31% for domestic consumption and 70% for irrigation, which represent 1372 × 103 m3 and 94 × 106 m3 of water, respectively. In the two scenarios, the water demand deficit increased to 37% for domestic consumption and 77% for irrigation. In the first scenario, the average annual water demand deficit was 183 × 106 m3 of water for irrigation. In the second scenario, the average annual water demand deficit was 385 × 103 m3 of water for domestic consumption, and 106 × 106 m3 of water for irrigating the expanded olive grove area. These results demonstrate that Portuguese farmers can use our model as a decision support tool to determine how much water needs to be stored to meet the present and future water demand.


Subject(s)
Agriculture/methods , Hydrology , Water Supply , Crops, Agricultural , Portugal , Rivers , Seasons , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...