Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(40): 56092-56104, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34047899

ABSTRACT

In the present paper, zinc and cadmium layered double hydroxides (ZnCd-LDH) have been prepared through co-precipitation route then calcined at different temperatures. Their photocatalytic activity was determined by photodegradation of industriel toxic dyes (rhodamine B (RB) and crystal violet (CV)) in single and binary solutions illuminated with UVA or sunlight irradiation. It was found that the highest photodiscoloration efficiency was obtained for the nanomaterial heated at 700 °C (ZnCd-700). The physicochemical properties of ZnCd-LDH and ZnCd-700 were determined by PXRD, FTIR, DSC, TG/DTG, and DRS-UV-Vis. By heating the ZnCd-LDH material, some demixtion to ZnO and CdO phases occurred, corresponding to a band gap energy value of 2.93 eV for the formed zinc oxide nanoparticles. The results revealed that with 1 g·L-1 of ZnCd-700 dose, the photodiscoloration of dyes was enhanced significantly where in single solution, it was > 83.9% and ≥ 98.0% in 90 min of UVA ilumination and sunlight, respectively. Whereas, the removal of CV and RB was > 89.7% and ≥ 98.7% in binary solution under UVA and solar irradiations, respectively. The superoxide anion radical (O2•-) was identified as the most influential reactive species for dyes degradation. In binary solution, the CV dye was photodiscolored faster than RB while in single solution, the result was the opposite. The re-use study of ZnCd-700 as photocatalyst showed a slight decrease of dyes discoloration varying between 1.4 and 7.1% from the second to the fourth use.


Subject(s)
Coloring Agents , Oxides , Cadmium , Catalysis , Zinc
2.
Water Environ Res ; 89(9): 783-790, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28855016

ABSTRACT

The present report describes the removal of indigo carmine dye from water via adsorption on ZnAl-r hydrotalcite. Two grades of clay based on Zn/Al molar ratios of 3 and 4, uncalcined and calcined, were used. The adsorbents characterization using X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential thermal and thermogravimetric analysis (DTA and TGA, respectively) revealed a layered structure for the hydrotalcite clays, whereas their calcination favored the formation of ZnO and ZnAl2O4 mixed metal oxides. The calcined materials immobilized much larger amounts of indigo carmine dye than the uncalcined layered double hydroxides (LDHs) specimens. The maximum adsorption capacities obey the order: CZnAl-4 (520.8 mg/g) > CZnAl-3 (358.4 mg/g) > ZnAl-3 (67.25 mg/g) > ZnAl-4 (21.65 mg/g). The adsorption isotherms are best described by Langmuir model. The sorption process is spontaneous in nature and its kinetics data are best described by a pseudo-second-order model. Adsorption tests on re-used calcined clays demonstrate its reusability after three thermal cycles.


Subject(s)
Aluminum Silicates/chemistry , Aluminum/chemistry , Indigo Carmine/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Zinc/chemistry , Adsorption , Clay , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...