Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Prion ; 14(1): 31-41, 2020 12.
Article in English | MEDLINE | ID: mdl-31950869

ABSTRACT

Adult neurogenesis, analogous to early development, is comprised of several, often concomitant, processes including proliferation, differentiation, and formation of synaptic connections. However, due to continual, asynchronous turn-over, newly-born adult olfactory sensory neurons (OSNs) must integrate into existing circuitry. Additionally, OSNs express high levels of cellular prion protein (PrPC), particularly in the axon, which implies a role in this cell type. The cellular prion has been shown to be important for proper adult OSN neurogenesis primarily by stabilizing mature olfactory neurons within this circuitry. However, the role of PrPC on each specific adult neurogenic processes remains to be investigated in detail. To tease out the subtle effects of prion protein expression level, a large population of regenerating neurons must be investigated. The thyroid drug methimazole (MTZ) causes nearly complete OSN loss in rodents and is used as a model of acute olfactory injury, providing a mechanism to induce synchronized OSN regeneration. This study investigated the effect of PrPC on adult neurogenesis after acute nasotoxic injury. Altered PrPC levels affected olfactory sensory epithelial (OSE) regeneration, cell proliferation, and differentiation. Attempts to investigate the role of PrPC level on axon regeneration did not support previous studies, and glomerular targeting did not recover to vehicle-treated levels, even by 20 weeks. Together, these studies demonstrate that the cellular prion protein is critical for regeneration of neurons, whereby increased PrPC levels promote early neurogenesis, and that lack of PrPC delays the regeneration of this tissue after acute injury.


Subject(s)
Nerve Regeneration/physiology , Olfactory Receptor Neurons/pathology , Prion Proteins/metabolism , Acute Disease , Animals , Axons/drug effects , Axons/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Male , Methimazole/toxicity , Mice, Transgenic , Nerve Regeneration/drug effects , Neurogenesis/drug effects , Olfactory Mucosa/drug effects , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/drug effects
2.
Dev Biol ; 438(1): 23-32, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29577883

ABSTRACT

The cellular prion protein (PrPC) has been associated with diverse biological processes including cell signaling, neurogenesis, and neuroprotection, but its physiological function(s) remain ambiguous. Here we determine the role of PrPC in adult neurogenesis using the olfactory system model in transgenic mice. Olfactory sensory neurons (OSNs) within the olfactory sensory epithelium (OSE) undergo neurogenesis, integration, and turnover even into adulthood. The neurogenic processes of proliferation, differentiation/maturation, and axon targeting were evaluated in wild type, PrP-overexpressing, and PrP-null transgenic mice. Our results indicate that PrPC plays a role in maintaining mature OSNs within the epithelium: overexpression of PrPC resulted in greater survival of mitotically active cells within the OSE, whereas absence of prion protein resulted in fewer cells being maintained over time. These results are supported by both quantitative PCR analysis of gene expression and protein analysis characteristic of OSN differentiation. Finally, evaluation of axon migration determined that OSN axon targeting in the olfactory bulb is PrPC dose-dependent. Together, these findings provide new mechanistic insight into the neuroprotective role for PrPC in adult OSE neurogenesis, whereby more mature neurons are stably maintained in animals expressing PrPC.


Subject(s)
Axons/physiology , Neurogenesis/genetics , Olfactory Receptor Neurons/metabolism , PrPC Proteins/genetics , Animals , Axons/metabolism , Blotting, Western , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Female , Male , Mice , Mice, Transgenic , Neurogenesis/physiology , Olfactory Receptor Neurons/physiology , PrPC Proteins/metabolism , Real-Time Polymerase Chain Reaction
3.
J Virol ; 89(20): 10427-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26246570

ABSTRACT

UNLABELLED: Phenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrP(Sc) conformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH) Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrP(Sc) polypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrP(Sc) differed for the CWD strains in a host-dependent manner. WST CWD produced PrP(Sc) amyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrP(Sc) from WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrP(Sc) properties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent of Prnp can alter the PrP(Sc) conformation of certain prion strains, leading to changes in the biophysical properties of PrP(Sc), neuropathology, and clinical prion disease. IMPORTANCE: Prions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In the present study, we investigated prion diversity in two hosts species that express the same prion protein gene. While prior reports have demonstrated that prion strain properties are stable upon infection of the same host species and prion protein genotype, our findings indicate that certain prion strains can undergo dramatic changes in biological properties that are not dependent on the prion protein. Therefore, host factors independent of the prion protein can affect prion diversity. Understanding how host pathways can modify prion disease phenotypes may provide clues on how to alter prion formation and lead to treatments for prion, and other, human neurodegenerative diseases of protein misfolding.


Subject(s)
Brain/pathology , Genotype , Peptide Fragments/chemistry , Plaque, Amyloid/pathology , PrPSc Proteins/chemistry , Wasting Disease, Chronic/pathology , Animals , Brain/metabolism , Cricetulus , Deer , Epigenesis, Genetic , Humans , Injections, Intraventricular , Mice , Mice, Transgenic , Peptide Fragments/metabolism , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , PrPSc Proteins/genetics , PrPSc Proteins/metabolism , Protein Conformation , Protein Stability , Proteolysis , Solubility , Species Specificity , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/metabolism
4.
PLoS One ; 10(3): e0119863, 2015.
Article in English | MEDLINE | ID: mdl-25822718

ABSTRACT

Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.


Subject(s)
Olfactory Mucosa/innervation , Olfactory Mucosa/pathology , Prion Diseases/etiology , Prions/pathogenicity , Animals , Brain Diseases/etiology , Brain Diseases/pathology , Brain Diseases/physiopathology , Cranial Nerves/pathology , Cricetinae , Disease Models, Animal , Mesocricetus , Methimazole/toxicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Neurogenesis , Olfactory Mucosa/drug effects , Olfactory Nerve/pathology , Olfactory Receptor Neurons/drug effects , Olfactory Receptor Neurons/pathology , Olfactory Receptor Neurons/physiology , PrPSc Proteins/pathogenicity , Prion Diseases/pathology , Prion Diseases/physiopathology , Prions/physiology , Rats
5.
J Virol ; 88(15): 8640-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24850738

ABSTRACT

UNLABELLED: Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrP(Sc), was observed in nerve fibers of the tongue approximately 2 weeks prior to PrP(Sc) deposition in skeletal muscle. Initially, PrP(Sc) deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrP(Sc) was widely distributed in muscle cells, but <10% of prion-infected cells exhibited PrP(Sc) deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrP(Sc) was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrP(Sc)-bound endosomes can lead to membrane recycling in which PrP(Sc) is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrP(Sc) formation on muscle cells across the NMJ. IMPORTANCE: Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into muscle cells. Since early prion spread is anterograde and endosome-lysosomal movement within axons is primarily retrograde, these findings suggest that endosome-bound prions may have an alternate fate that directs prions to the peripheral synapse.


Subject(s)
Axons/metabolism , Prions/metabolism , Protein Transport , Synapses/metabolism , Animals , Brain Chemistry , Cranial Nerves/chemistry , Mesocricetus , Muscle, Skeletal/chemistry , Time Factors
6.
J Virol ; 86(3): 1777-88, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22130543

ABSTRACT

In this study, we investigated the role of damage to the nasal mucosa in the shedding of prions into nasal samples as a pathway for prion transmission. Here, we demonstrate that prions can replicate to high levels in the olfactory sensory epithelium (OSE) in hamsters and that induction of apoptosis in olfactory receptor neurons (ORNs) in the OSE resulted in sloughing off of the OSE from nasal turbinates into the lumen of the nasal airway. In the absence of nasotoxic treatment, olfactory marker protein (OMP), which is specific for ORNs, was not detected in nasal lavage samples. However, after nasotoxic treatment that leads to apoptosis of ORNs, both OMP and prion proteins were present in nasal lavage samples. The cellular debris that was released from the OSE into the lumen of the nasal airway was positive for both OMP and the disease-specific isoform of the prion protein, PrP(Sc). By using the real-time quaking-induced conversion assay to quantify prions, a 100- to 1,000-fold increase in prion seeding activity was observed in nasal lavage samples following nasotoxic treatment. Since neurons replicate prions to higher levels than other cell types and ORNs are the most environmentally exposed neurons, we propose that an increase in ORN apoptosis or damage to the nasal mucosa in a host with a preexisting prion infection of the OSE could lead to a substantial increase in the release of prion infectivity into nasal samples. This mechanism of prion shedding from the olfactory mucosa could contribute to prion transmission.


Subject(s)
Olfactory Mucosa/pathology , Prions/metabolism , Animals , Humans
7.
PLoS One ; 6(12): e28026, 2011.
Article in English | MEDLINE | ID: mdl-22174765

ABSTRACT

Chronic wasting disease (CWD) is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrP(Sc), prion infection of the central and peripheral neuroendocrine system, and PrP(Sc) deposition in cardiac muscle. There was also prominent PrP(Sc) deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the 'wasting' or WST strain of hamster CWD.


Subject(s)
Cachexia/complications , Myocardium/pathology , PrPSc Proteins/metabolism , Wasting Disease, Chronic/complications , Wasting Disease, Chronic/transmission , Animals , Behavior, Animal , Blotting, Western , Body Weight , Brain/metabolism , Brain/pathology , Cachexia/pathology , Cricetinae , Epithelium/metabolism , Epithelium/pathology , Feeding Behavior , Immunohistochemistry , Mice , Mice, Transgenic , Nasal Cavity/metabolism , Nasal Cavity/pathology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Time Factors
8.
PLoS One ; 6(5): e19836, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21589935

ABSTRACT

The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.


Subject(s)
Lichens/enzymology , Prions/metabolism , Serine Proteases/metabolism , Animals , Cricetinae , Deer , Hydrogen-Ion Concentration , Mice , Plant Extracts/pharmacology , Prion Diseases/metabolism , Serine Proteases/isolation & purification
9.
PLoS Pathog ; 6(12): e1001217, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21152012

ABSTRACT

A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrP(C) to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD(50)). Brain tissue from 263K scrapie-affected hamsters gave SD(50) values of 10(11)-10(12)/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD(50) values of 10(3.5)-10(5.7)/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD(50) values of 10(2.0)-10(2.9)/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity.


Subject(s)
Endpoint Determination/methods , High-Throughput Screening Assays/standards , Prions/analysis , Amyloid/analysis , Animals , Brain , Cerebrospinal Fluid/chemistry , Cricetinae , Deer , High-Throughput Screening Assays/methods , Humans , Methods , Mink , Protein Structure, Secondary , Sheep
10.
PLoS Pathog ; 6(4): e1000837, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20419120

ABSTRACT

This study investigated the role of prion infection of the olfactory mucosa in the shedding of prion infectivity into nasal secretions. Prion infection with the HY strain of the transmissible mink encephalopathy (TME) agent resulted in a prominent infection of the olfactory bulb and the olfactory sensory epithelium including the olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs), whose axons comprise the two olfactory cranial nerves. A distinct glycoform of the disease-specific isoform of the prion protein, PrP(Sc), was found in the olfactory mucosa compared to the olfactory bulb, but the total amount of HY TME infectivity in the nasal turbinates was within 100-fold of the titer in the olfactory bulb. PrP(Sc) co-localized with olfactory marker protein in the soma and dendrites of ORNs and VRNs and also with adenylyl cyclase III, which is present in the sensory cilia of ORNs that project into the lumen of the nasal airway. Nasal lavages from HY TME-infected hamsters contained prion titers as high as 10(3.9) median lethal doses per ml, which would be up to 500-fold more infectious in undiluted nasal fluids. These findings were confirmed using the rapid PrP(Sc) amplification QuIC assay, indicating that nasal swabs have the potential to be used for prion diagnostics. These studies demonstrate that prion infection in the olfactory epithelium is likely due to retrograde spread from the olfactory bulb along the olfactory and vomeronasal axons to the soma, dendrites, and cilia of these peripheral neurons. Since prions can replicate to high levels in neurons, we propose that ORNs can release prion infectivity into nasal fluids. The continual turnover and replacement of mature ORNs throughout the adult lifespan may also contribute to prion shedding from the nasal passage and could play a role in transmission of natural prion diseases in domestic and free-ranging ruminants.


Subject(s)
Neurons/metabolism , Olfactory Mucosa/metabolism , PrPSc Proteins/metabolism , Prion Diseases/metabolism , Prion Diseases/transmission , Animals , Blotting, Western , Bodily Secretions/metabolism , Brain Stem/metabolism , Cricetinae , Fluorescent Antibody Technique , Immunohistochemistry , Mesocricetus , Microscopy, Confocal , Nasal Lavage , Nasal Lavage Fluid/chemistry , Olfactory Bulb/metabolism , Olfactory Nerve/metabolism
11.
Folia Neuropathol ; 47(2): 195-204, 2009.
Article in English | MEDLINE | ID: mdl-19618341

ABSTRACT

We review here the history, neuropathology, clinical picture and molecular data on transmissible mink encephalopathy (TME). This obscure disease is of utmost importance as it is plausible that it represents a transmission of hidden bovine spongiform encephalopathy (BSE) to mink in the USA. Of special interest is the similarity of L-type of BSE and TME. Furthermore, experimental molecular studies showed the TME strain-specific in vitro conversion in a cell-free system. In addition, we show here for the first time confocal laser microscopy studies of co-localization of PrPd- amyloid plaques and GFAP-expressing astrocytes.


Subject(s)
Prion Diseases/pathology , Prion Diseases/transmission , Prions/genetics , Animals , Cattle , Encephalopathy, Bovine Spongiform/genetics , Encephalopathy, Bovine Spongiform/pathology , Encephalopathy, Bovine Spongiform/transmission , Microscopy, Confocal , Mink , Prion Diseases/genetics , Prions/metabolism
12.
J Virol ; 83(13): 6435-45, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19369351

ABSTRACT

Prion neuroinvasion from peripheral tissues involves agent replication in the lymphoreticular system (LRS) prior to entry into the nervous system. This study investigated the role of the LRS in prion neuroinvasion from the oral and nasal mucosa in wild-type and immunodeficient mice and in hamsters infected with the HY and DY strains of the transmissible mink encephalopathy (TME) agent. Following inoculation at neural sites, all hosts were susceptible to prion disease and had evidence of prion infection in the brain, but infection of the LRS was found only in scrapie-infected wild-type mice and HY TME-infected hamsters. In the LRS replication-deficient models, prion neuroinvasion was not observed following intraperitoneal or oral inoculation. However, immunodeficient mice, which have impaired follicular dendritic cells, were susceptible to scrapie following intratongue and intranasal inoculation despite the absence of PrP(Sc) in the tongue or the nasal cavity. For DY TME, hamsters were susceptible following intratongue but not intranasal inoculation and PrP(Sc) was limited to nerve fibers of the tongue. These findings indicate that neuroinvasion from the tongue and nasal cavity can be independent of LRS infection but neuroinvasion was partially dependent on the strain of the prion agent and/or the host species. The paucity of PrP(Sc) deposition in the oral and nasal mucosa from LRS replication-deficient hosts following neuroinvasion from these tissues suggests an infection of nerve fibers that is below the threshold of PrP(Sc) detection and/or the transport of the prion agent along cranial nerves without agent replication.


Subject(s)
Lymphatic System/physiopathology , Mouth Mucosa/pathology , Nasal Mucosa/pathology , PrPSc Proteins/pathogenicity , Scrapie/pathology , Animals , Brain/pathology , Cricetinae , Female , Male , Mesocricetus , Mice , Mice, Inbred C57BL , Prions/metabolism , Tongue/pathology , Tongue Diseases/pathology
13.
J Virol ; 81(9): 4615-24, 2007 May.
Article in English | MEDLINE | ID: mdl-17314174

ABSTRACT

The prion agent has been detected in skeletal muscle of humans and animals with prion diseases. Here we report scrapie infection of murine C2C12 myoblasts and myotubes in vitro following coculture with a scrapie-infected murine neuroblastoma (N2A) cell line but not following incubation with a scrapie-infected nonneuronal cell line or a scrapie brain homogenate. Terminal differentiation of scrapie-infected C2C12 myoblasts into myotubes resulted in an increase in the expression of the disease-specific prion protein, PrP(Sc). The amount of scrapie infectivity or PrP(Sc) in C2C12 myotubes was comparable to the levels found in scrapie-infected N2A cells, indicating that a high level of infection was established in muscle cells. Subclones of scrapie-infected C2C12 cells produced high levels of PrP(Sc) in myotubes, and the C-terminal C2 polypeptide fragment of PrP(Sc) was found based on deglycosylation and PrP(Sc)-specific immunoprecipitation of cell lysates. This is the first report of a stable prion infection in muscle cells in vitro and of a long-term prion infection in a nondividing, differentiated peripheral cell type in culture. These in vitro studies also suggest that in vivo prion infection of skeletal muscle requires contact with prion-infected neurons or, possibly, nerve terminals.


Subject(s)
Muscle, Skeletal/metabolism , Myoblasts/metabolism , Prions/metabolism , Animals , Blotting, Western , Cell Differentiation/physiology , Cell Line , Desmin/metabolism , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique , Immunoprecipitation , Mice , Myoblasts/physiology
14.
J Virol ; 81(2): 689-97, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17079313

ABSTRACT

When two prion strains infect a single host, one strain can interfere with the ability of the other to cause disease but it is not known whether prion replication of the second strain is also diminished. To further investigate strain interference, we infected hamsters in the sciatic nerve with the long-incubation-period transmissible mink encephalopathy (TME) agent DY TME prior to superinfection of hamsters with the short-incubation-period HY TME agent. Increases in the interval between TME agent inoculations resulted in an extension of the incubation period of HY TME or a complete block of the ability of the HY TME agent to cause disease. The sciatic nerve route of inoculation gave the two TME strains access to the same population of neurons, allowing for the potential of prion interference in the lumbar spinal cord. The ability of the DY TME agent to extend the incubation period of HY TME corresponds with detection of DY TME PrP(Sc), the abnormal isoform of the prion protein, in the lumbar spinal cord. The increased incubation period of HY TME or the inability of the HY TME agent to cause disease in the coinfected animals corresponds with a reduction in the abundance of HY TME PrP(Sc) in the lumbar spinal cord. When the two strains were not directed to the same populations of neurons within the lumbar spinal cord, interference between HY TME and DY TME did not occur. This suggests that DY TME agent replication interferes with HY TME agent replication when the two strains infect a common population of neurons.


Subject(s)
PrPSc Proteins/classification , PrPSc Proteins/pathogenicity , Animals , Cricetinae , Lumbosacral Region/pathology , Male , Mesocricetus , Mink/metabolism , PrPSc Proteins/metabolism , Prion Diseases/pathology , Prions , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Species Specificity , Spinal Cord/metabolism , Spinal Cord/pathology
15.
Emerg Infect Dis ; 13(12): 1887-94, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18258040

ABSTRACT

Transmissible mink encepholapathy (TME) is a foodborne transmissible spongiform encephalopathy (TSE) of ranch-raised mink; infection with a ruminant TSE has been proposed as the cause, but the precise origin of TME is unknown. To compare the phenotypes of each TSE, bovine-passaged TME isolate and 3 distinct natural bovine spongiform encephalopathy (BSE) agents (typical BSE, H-type BSE, and L-type BSE) were inoculated into an ovine transgenic mouse line (TgOvPrP4). Transgenic mice were susceptible to infection with bovine-passaged TME, typical BSE, and L-type BSE but not to H-type BSE. Based on survival periods, brain lesions profiles, disease-associated prion protein brain distribution, and biochemical properties of protease-resistant prion protein, typical BSE had a distint phenotype in ovine transgenic mice compared to L-type BSE and bovine TME. The similar phenotypic properties of L-type BSE and bovine TME in TgOvPrP4 mice suggest that L-type BSE is a much more likely candidate for the origin of TME than is typical BSE.


Subject(s)
Cattle Diseases/pathology , Disease Models, Animal , Encephalopathy, Bovine Spongiform/pathology , Prions , Animals , Brain/pathology , Cattle , Female , Mice , Mice, Inbred Strains , Phenotype
16.
J Virol ; 80(9): 4546-56, 2006 May.
Article in English | MEDLINE | ID: mdl-16611915

ABSTRACT

Centrifugal spread of the prion agent to peripheral tissues is postulated to occur by axonal transport along nerve fibers. This study investigated the distribution of the pathological isoform of the protein (PrP(Sc)) in the tongues and nasal cavities of hamsters following intracerebral inoculation of the HY strain of the transmissible mink encephalopathy (TME) agent. We report that PrP(Sc) deposition was found in the lamina propria, taste buds, and stratified squamous epithelium of fungiform papillae in the tongue, as well as in skeletal muscle cells. Using laser scanning confocal microscopy, PrP(Sc) was localized to nerve fibers in each of these structures in the tongue, neuroepithelial taste cells of the taste bud, and, possibly, epithelial cells. This PrP(Sc) distribution was consistent with a spread of HY TME agent along both somatosensory and gustatory cranial nerves to the tongue and suggests subsequent synaptic spread to taste cells and epithelial cells via peripheral synapses. In the nasal cavity, PrP(Sc) accumulation was found in the olfactory and vomeronasal epithelium, where its location was consistent with a distribution in cell bodies and apical dendrites of the sensory neurons. Prion spread to these sites is consistent with transport via the olfactory nerve fibers that descend from the olfactory bulb. Our data suggest that epithelial cells, neuroepithelial taste cells, or olfactory sensory neurons at chemosensory mucosal surfaces, which undergo normal turnover, infected with the prion agent could be shed and play a role in the horizontal transmission of animal prion diseases.


Subject(s)
Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Prion Diseases/metabolism , Prion Diseases/pathology , Prions/metabolism , Animals , Biomarkers , Cricetinae , Mesocricetus , Microscopy, Confocal , Prions/pathogenicity
17.
J Virol ; 79(21): 13794-6, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16227298

ABSTRACT

Chronic wasting disease (CWD) is an emerging prion disease of deer and elk. The risk of CWD transmission to humans following exposure to CWD-infected tissues is unknown. To assess the susceptibility of nonhuman primates to CWD, two squirrel monkeys were inoculated with brain tissue from a CWD-infected mule deer. The CWD-inoculated squirrel monkeys developed a progressive neurodegenerative disease and were euthanized at 31 and 34 months postinfection. Brain tissue from the CWD-infected squirrel monkeys contained the abnormal isoform of the prion protein, PrP-res, and displayed spongiform degeneration. This is the first reported transmission of CWD to primates.


Subject(s)
Disease Transmission, Infectious , Monkey Diseases/transmission , Wasting Disease, Chronic/transmission , Animals , Brain/metabolism , Brain/pathology , Monkey Diseases/pathology , PrPSc Proteins/metabolism , Saimiri , Species Specificity , Wasting Disease, Chronic/pathology
18.
J Virol ; 79(18): 11858-63, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16140762

ABSTRACT

While prion infection of the lymphoreticular system (LRS) is necessary for neuroinvasion in many prion diseases, in bovine spongiform encephalopathy and atypical cases of sheep scrapie there is evidence to challenge that LRS infection is required for neuroinvasion. Here we investigated the role of prion infection of LRS tissues in neuroinvasion following extraneural inoculation with the HY and DY strains of the transmissible mink encephalopathy (TME) agent. DY TME agent infectivity was not detected in spleen or lymph nodes following intraperitoneal inoculation and clinical disease was not observed following inoculation into the peritoneum or lymph nodes, or after oral ingestion. In contrast, inoculation of the HY TME agent by each of these peripheral routes resulted in replication in the spleen and lymph nodes and induced clinical disease. To clarify the role of the LRS in neuroinvasion, the HY and DY TME agents were also inoculated into the tongue because it is densely innervated and lesions on the tongue, which are common in ruminants, increase the susceptibility of hamsters to experimental prion disease. Following intratongue inoculation, the DY TME agent caused prion disease and was detected in both the tongue and brainstem nuclei that innervate the tongue, but the prion protein PrP(Sc) was not detected in the spleen or lymph nodes. These findings indicate that the DY TME agent can spread from the tongue to the brain along cranial nerves and neuroinvasion does not require agent replication in the LRS. These studies provide support for prion neuroinvasion from highly innervated peripheral tissues in the absence of LRS infection in natural prion diseases of livestock.


Subject(s)
Prion Diseases/pathology , Animals , Brain/pathology , Cranial Nerves/pathology , Cricetinae , Injections, Intraperitoneal , Lymph Nodes/pathology , Male , Mesocricetus , PrPSc Proteins/administration & dosage , PrPSc Proteins/pathogenicity , Prion Diseases/etiology , Spleen/pathology , Tongue/pathology
19.
J Virol ; 78(13): 6792-8, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15194754

ABSTRACT

The presence of the prion agent in skeletal muscle is thought to be due to the infection of nerve fibers located within the muscle. We report here that the pathological isoform of the prion protein, PrP(Sc), accumulates within skeletal muscle cells, in addition to axons, in the tongue of hamsters following intralingual and intracerebral inoculation of the HY strain of the transmissible mink encephalopathy agent. Localization of PrP(Sc) to the neuromuscular junction suggests that this synapse is a site for prion agent spread between motor axon terminals and muscle cells. Following intracerebral inoculation, the majority of PrP(Sc) in the tongue was found in the lamina propria, where it was associated with sensory nerve fibers in the core of the lingual papillae. PrP(Sc) staining was also identified in the stratified squamous epithelium of the lingual mucosa. These findings indicate that prion infection of skeletal muscle cells and the epithelial layer in the tongue can be established following the spread of the prion agent from nerve terminals and/or axons that innervate the tongue. Our data suggest that ingestion of meat products containing prion-infected tongue could result in human exposure to the prion agent, while sloughing of prion-infected epithelial cells at the mucosal surface of the tongue could be a mechanism for prion agent shedding and subsequent prion transmission in animals.


Subject(s)
Muscle, Skeletal/metabolism , PrPSc Proteins/pathogenicity , Prion Diseases/metabolism , Tongue/metabolism , Animals , Cricetinae , Mesocricetus , Microscopy, Confocal , Mink , Muscle, Skeletal/cytology , Neuromuscular Junction/metabolism , Telencephalon/metabolism , Tongue/ultrastructure , Tongue Diseases/metabolism
20.
J Gen Virol ; 85(Pt 1): 265-273, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14718642

ABSTRACT

We report that the replication-deficient DY strain of transmissible mink encephalopathy (TME) can delay disease caused by the pathogenic HY TME strain. In this study, competition between the HY and DY TME agents was investigated following superinfection of the sciatic nerve and peritoneal cavity. Initially, DY TME infection was examined in the absence of superinfection and it was found that inoculation into the brain and sciatic nerve resulted in prion disease and PrP(Sc) deposition in brain but not lymphoreticular tissues. Conversely, intraperitoneal inoculation of the DY TME agent did not result in clinical symptoms, DY TME agent replication or PrP(Sc) deposition 400-600 days after infection. These findings indicate that the DY TME agent does not replicate in secondary lymphoid organs and is non-pathogenic when neuroinvasion is dependent on prior infection of the lymphoreticular system. However, intraperitoneal inoculation of the DY TME agent at 60 days, but not at 30 days, prior to intraperitoneal inoculation of the HY TME agent resulted in an extension of the HY TME incubation period. Inoculation of the DY TME agent into the sciatic nerve at 60 days prior to intrasciatic nerve inoculation of the HY TME agent did not delay the incubation period of HY TME. The ability of the DY TME agent to delay HY TME infection following extraneural inoculation, but not neural infection, suggests that HY and DY TME agent competition can occur in a common replication site whose cellular location precedes infection of both the lymphoreticular and peripheral nervous systems.


Subject(s)
PrPSc Proteins/metabolism , PrPSc Proteins/pathogenicity , Prion Diseases/physiopathology , Animals , Brain/metabolism , Cricetinae , Injections, Intraperitoneal , Mesocricetus , Mink/virology , PrPSc Proteins/administration & dosage , PrPSc Proteins/classification , Sciatic Nerve/metabolism , Spinal Cord/metabolism , Spleen/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...