Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 29(3): 610-623, 2020 02.
Article in English | MEDLINE | ID: mdl-31849106

ABSTRACT

The social environment encountered early during development can temporarily or permanently influence life history decisions and behaviour of individuals and correspondingly shape molecular pathways. In the highly social cichlid fish Neolamprologus pulcher, deprivation of brood care permanently affects social behaviour and alters the expression of stress axis genes in juveniles and adults. It is unclear when gene expression patterns change during early life depending on social experience, and which genes are involved. We compared brain gene expression of N. pulcher at two time points during the social experience phase when juveniles were reared either with or without brood care, and one time point shortly afterwards. We compared (a) whole transcriptomes and (b) expression of 79 genes related to stress regulation, in order to define a neurogenomic state of stress for each fish. At developmental day 75, that is, after the social experience phase, 43 genes were down-regulated in fish having experienced social deprivation, while two genes involved in learning and memory and in post-translational modifications of proteins (PTM), respectively, were up-regulated. Down-regulated genes were mainly associated with immunity, PTM and brain function. In contrast, during the experience phase no genes were differentially expressed when assessing the whole transcriptome. When focusing on the neurogenomic state associated with the stress response, we found that individuals from the two social treatments differed in how their brain gene expression profiles changed over developmental stages. Our results indicate that the early social environment influences the transcriptional activation in fish brains, both during and after an early social experience, possibly affecting plasticity, immune system function and stress axis regulation.


Subject(s)
Behavior, Animal/physiology , Cichlids/genetics , Transcriptome/genetics , Animals , Brain/physiology , Female , Fish Proteins/genetics , Gene Expression/genetics , Male , Social Behavior , Social Environment
2.
Am Nat ; 186(1): 123-40, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26098344

ABSTRACT

Social animals can greatly benefit from well-developed social skills. Because the frequency and diversity of social interactions often increase with the size of social groups, the benefits of advanced social skills can be expected to increase with group size. Variation in social skills often arises during ontogeny, depending on early social experience. Whether variation of social-group sizes affects development of social skills and related changes in brain structures remains unexplored. We investigated whether, in a cooperatively breeding cichlid, early group size (1) shapes social behavior and social skills and (2) induces lasting plastic changes in gross brain structures and (3) whether the development of social skills is confined to a sensitive ontogenetic period. Rearing-group size and the time juveniles spent in these groups interactively influenced the development of social skills and the relative sizes of four main brain regions. We did not detect a sensitive developmental period for the shaping of social behavior within the 2-month experience phase. Instead, our results suggest continuous plastic behavioral changes over time. We discuss how developmental effects on social behavior and brain architecture may adaptively tune phenotypes to their current or future environments.


Subject(s)
Behavior, Animal , Brain/anatomy & histology , Cichlids/growth & development , Social Behavior , Aggression , Animals , Brain/growth & development , Breeding , Cichlids/anatomy & histology , Cichlids/physiology , Cooperative Behavior , Social Environment
SELECTION OF CITATIONS
SEARCH DETAIL
...