Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37027260

ABSTRACT

Speed of sound estimation in ultrasound imaging is a growing modality with several clinical applications such as hepatic steatosis stages quantification. A key challenge for clinically relevant speed of sound estimation is to obtain repeatable values independent of superficial tissues and available in real-time. Recent works have demonstrated the feasibility to achieve quantitative estimations of the local speed of sound in layered media. However, such techniques require high computational power and exhibit instabilities. We present a novel speed of sound estimation technique based on an angular approach of ultrasound imaging in which plane waves are considered in transmit and receive. This change of paradigm allows us to rely on the refraction properties of plane waves to infer the local speed of sound values directly from the angular raw data. The proposed method robustly estimates the local speed of sound with only a few ultrasound emissions and with a low computational complexity which makes it compatible with real-time imaging. Simulations and in vitro experimental results show that the proposed method outperforms state-of-the-art approaches with biases and standard deviations lower than 10 m s-1, eight times fewer emissions, and 1000 times lower computational time. Further in vivo experiments validate its performance for liver imaging.

2.
J Synchrotron Radiat ; 27(Pt 6): 1577-1589, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147182

ABSTRACT

The impressive progress in the performance of synchrotron radiation sources is nowadays driven by the so-called `ultimate storage ring' projects which promise an unprecedented improvement in brightness. Progress on the detector side has not always been at the same pace, especially as far as soft X-ray 2D detectors are concerned. While the most commonly used detectors are still based on microchannel plates or CCD technology, recent developments of CMOS (complementary metal oxide semiconductor)-type detectors will play an ever more important role as 2D detectors in the soft X-ray range. This paper describes the capabilities and performance of a camera equipped with a newly commercialized backside-illuminated scientific CMOS (sCMOS-BSI) sensor, integrated in a vacuum environment, for soft X-ray experiments at synchrotron sources. The 4 Mpixel sensor reaches a frame rate of up to 48 frames s-1 while matching the requirements for X-ray experiments in terms of high-intensity linearity (>98%), good spatial homogeneity (<1%), high charge capacity (up to 80 ke-), and low readout noise (down to 2 e- r.m.s.) and dark current (3 e- per second per pixel). Performance evaluations in the soft X-ray range have been carried out at the METROLOGIE beamline of the SOLEIL synchrotron. The quantum efficiency, spatial resolution (24 line-pairs mm-1), energy resolution (<100 eV) and radiation damage versus the X-ray dose (<600 Gy) have been measured in the energy range from 40 to 2000 eV. In order to illustrate the capabilities of this new sCMOS-BSI sensor, several experiments have been performed at the SEXTANTS and HERMES soft X-ray beamlines of the SOLEIL synchrotron: acquisition of a coherent diffraction pattern from a pinhole at 186 eV, a scattering experiment from a nanostructured Co/Cu multilayer at 767 eV and ptychographic imaging in transmission at 706 eV.

3.
Article in English | MEDLINE | ID: mdl-29505404

ABSTRACT

Conventional ultrasound (US) image reconstruction methods rely on delay-and-sum (DAS) beamforming, which is a relatively poor solution to the image reconstruction problem. An alternative to DAS consists in using iterative techniques, which require both an accurate measurement model and a strong prior on the image under scrutiny. Toward this goal, much effort has been deployed in formulating models for US imaging, which usually require a large amount of memory to store the matrix coefficients. We present two different techniques, which take advantage of fast and matrix-free formulations derived for the measurement model and its adjoint, and rely on sparsity of US images in well-chosen models. Sparse regularization is used for enhanced image reconstruction. Compressed beamforming exploits the compressed sensing framework to restore high-quality images from fewer raw data than state-of-the-art approaches. Using simulated data and in vivo experimental acquisitions, we show that the proposed approach is three orders of magnitude faster than non-DAS state-of-the-art methods, with comparable or better image quality.

4.
Article in English | MEDLINE | ID: mdl-27913327

ABSTRACT

Ultrafast imaging based on plane-wave (PW) insonification is an active area of research due to its capability of reaching high frame rates. Among PW imaging methods, Fourier-based approaches have demonstrated to be competitive compared with traditional delay and sum methods. Motivated by the success of compressed sensing techniques in other Fourier imaging modalities, like magnetic resonance imaging, we propose a new sparse regularization framework to reconstruct highquality ultrasound (US) images. The framework takes advantage of both the ability to formulate the imaging inverse problem in the Fourier domain and the sparsity of US images in a sparsifying domain. We show, by means of simulations, in vitro and in vivo data, that the proposed framework significantly reduces image artifacts, i.e., measurement noise and sidelobes, compared with classical methods, leading to an increase of the image quality.


Subject(s)
Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Ultrasonography/methods , Fourier Analysis , Models, Theoretical , Phantoms, Imaging
5.
Article in English | MEDLINE | ID: mdl-27740480

ABSTRACT

Ultrafast ultrasound imaging has become an intensive area of research thanks to its capability in reaching high frame rates. In this paper, we propose a scheme that allows the extension of the current Fourier-based techniques derived for planar acquisition to the reconstruction of sectorial scan with wide angle using diverging waves. The flexibility of the proposed formulation was assessed through two different Fourier-based techniques. The performance of the derived approaches was evaluated in terms of resolution and contrast from both simulations and in vitro experiments. The comparisons of the current state-of-the-art method with the conventional delay-and-sum technique illustrated the potential of the derived methods for producing competitive results with lower computational complexity.


Subject(s)
Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Ultrasonography/methods , Algorithms , Fourier Analysis , Humans , Motion , Phantoms, Imaging
6.
J Synchrotron Radiat ; 22(4): 968-79, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26134801

ABSTRACT

The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity.

SELECTION OF CITATIONS
SEARCH DETAIL
...