Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 97(7): 1898-906, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19804720

ABSTRACT

All-atom molecular dynamics simulations of the ion current through OmpF, the major porin in the outer membrane of Escherichia coli, were performed. Starting from the crystal structure, the all-atom modeling allows us to calculate a parameter-free ion conductance in semiquantitative agreement with experiment. Discrepancies between modeling and experiment occur, e.g., at salt concentrations above 1 M KCl or at high temperatures. At lower salt concentrations, the ions have separate pathways along the channel surface. The constriction zone in the channel contains, on one side, a series of positively charges (R42, R82, R132), and on the opposite side, two negatively charged residues (D113, E117). Mutations generated in the constriction zone by removing cationic residues enhance the otherwise small cation selectivity, whereas removing the anionic residues reverses the selectivity. Reduction of the negatively charged residues decreases the conductance by half, whereas cationic residues enhance the conductance. Experiments on mutants confirm the results of the molecular-level simulations.


Subject(s)
Electric Conductivity , Escherichia coli Proteins/metabolism , Molecular Dynamics Simulation , Porins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Ions/metabolism , Mutation , Porins/chemistry , Porins/genetics , Potassium Chloride/metabolism , Protein Conformation , Substrate Specificity , Water/metabolism
2.
PLoS One ; 4(5): e5453, 2009.
Article in English | MEDLINE | ID: mdl-19434239

ABSTRACT

BACKGROUND: Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. beta-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical reports have linked the MDR phenotype to altered membrane permeability including porin modification and efflux pump expression. METHODOLOGY/PRINCIPAL FINDINGS: Here influx of beta-lactams through the major Enterobacter aerogenes porin Omp36 is characterized. Conductance measurements through a single Omp36 trimer reconstituted into a planar lipid bilayer allowed us to count the passage of single beta-lactam molecules. Statistical analysis of each transport event yielded the kinetic parameters of antibiotic travel through Omp36 and distinguishable translocation properties of beta-lactams were quantified for ertapenem and cefepime. Expression of Omp36 in an otherwise porin-null bacterial strain is shown to confer increases in the killing rate of these antibiotics and in the corresponding bacterial susceptibility. CONCLUSIONS/SIGNIFICANCE: We propose the idea of a molecular "passport" that allows rapid transport of substrates through porins. Deciphering antibiotic translocation provides new insights for the design of novel drugs that may be highly effective at passing through the porin constriction zone. Such data may hold the key for the next generation of antibiotics capable of rapid intracellular accumulation to circumvent the further development MDR infections.


Subject(s)
Anti-Bacterial Agents/metabolism , Escherichia coli/metabolism , Porins/metabolism , beta-Lactams/metabolism , Anti-Bacterial Agents/pharmacology , Biological Transport/drug effects , Escherichia coli/drug effects , Escherichia coli Proteins/metabolism , Kinetics , Lipid Bilayers/metabolism , beta-Lactams/pharmacology
3.
Langmuir ; 24(7): 2987-91, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18324870

ABSTRACT

The membrane dipole potential is responsible for the modulation of numerous biological processes. It was previously shown (Ostroumova, O. S.; Kaulin, Y. A.; Gurnev, P. A.; Schagina, L. V. Langmuir 2007, 23, 6889-6892) that variations in the dipole potential lead to changes in the channel properties of the antifungal lipodepsipeptide syringomycin E (SRE). Here, data are presented demonstrating the effect of the membrane dipole potential on the channel-forming activity of SRE. A rise in the dipole potential is accompanied by both an increase in the minimum SRE concentration required for the detection of single channels at fixed voltage and a decrease in the steady-state number of open SRE channels at a given SRE concentration and voltage. These alterations are determined by several factors: gating charge, connected with translocations of lipid and SRE dipoles during channel formation, the bilayer-water solution partitioning of SRE, and the chemical work related to conformational changes during channel formation.


Subject(s)
Membrane Potentials/physiology , Peptides, Cyclic/pharmacology , Antifungal Agents/pharmacology , Cell Membrane Permeability/drug effects , Electrophysiology , Lipid Bilayers
4.
Eur Biophys J ; 35(5): 382-92, 2006 May.
Article in English | MEDLINE | ID: mdl-16470378

ABSTRACT

The bacterial lipodepsipeptide syringomycin E (SRE) added to one (cis-) side of bilayer lipid membrane forms voltage dependent ion channels. It was found that G-actin increased the SRE-induced membrane conductance due to formation of additional SRE-channels only in the case when actin and SRE were applied to opposite sides of a lipid bilayer. The time course of conductance relaxation depended on the sequence of SRE and actin addition, suggesting that actin binds to the lipid bilayer and binding is a limiting step for SRE-channel formation. G-actin adsorption on the membrane was irreversible. The amphiphilic polymers, Konig's polyanion (KP) and poly(Lys, Trp) (PLT) produced the actin-like effect. It was shown that the increase in the SRE membrane activity was due to hydrophobic interactions between the adsorbing molecules and membrane. Nevertheless, hydrophobic interactions were not sufficient for the increase of SRE channel-forming activity. The dependence of the number of SRE-channels on the concentration of adsorbing species gave an S-shaped curve indicating cooperative adsorption of the species. Kinetic analysis of SRE-channel number growth led to the conclusion that the actin, KP, and PLT molecules form aggregates (domains) on the trans-monolayer. It is suggested that an excess of SRE-channel formation occurs within the regions of the cis-monolayer adjacent to the domains of the adsorbed molecules, which increase the effective concentration of SRE-channel precursors.


Subject(s)
Actins/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Models, Chemical , Models, Molecular , Polymers/chemistry , Computer Simulation , Hydrophobic and Hydrophilic Interactions , Membrane Potentials , Peptides, Cyclic
SELECTION OF CITATIONS
SEARCH DETAIL
...